
MB87J2120 & MB87P2020 -A

Lavender & Jasmine

FUJITSU SEMICONDUCTOR

Fujitsu Microelectronics Europe GmbH
European MCU Design Centre (EMDC)
Am Siebenstein 6-10
D-63303 Dreieich-Buchschlag
Germany
Version: 1.7
File: MB87P2020.fm

HARDWARE MANUAL

Colour LCD/CRT/TV Controller

Specification

MB87J2120, MB87P2020-A Hardware Manual

Page 2

File: /usr/home/msed/gdc_dram/doc/manual/MB87P2020.fm

Copyright © 2001 by Fujitsu Microelectronics Europe GmbH
European MCU Design Centre (EMDC)
Am Siebenstein 6-10
D-63303 Dreieich-Buchschlag
Germany

This document contains information considered proprietary by the publisher. No part of
this document may be copied, or reproduced in any form or by any means, or transferred
to any third party without the prior written consent of the publisher. The document is sub-
ject to change without prior notice.

Revision History

Version Date Remark

0.8 05. Apr. 2001 First Release

0.9 27. Apr. 2001 Preliminary Release

1.0 29. Jun. 2001 Overview Section and Register List reviewed
SDC, PP, AAF, DIPA and ULB descriptions reviewed

1.1 20. Jul. 2001 Register List improved, Lavender pinning added, overall review

1.2 02. Aug. 2001 APLL spec included (CU)
Review: overview, functional descriptions, register/command lists
Preliminary AC Spec for Jasmine

1.3 05. Oct. 2001 AC Spec for both devices, Lavender added/Jasmine reviewed
Two pinning lists - sorted by name/pin number
ULB DMA limit description (DMA FIFO limits vs. IPA block size)
SDC Register description reviewed

1.4 11. Oct 2001 Clarified AC Spec output characteristics (20/50pF conditions)

1.5 27. Mar 2002 Pinning and additional registers for MB87P2020-A added
Design description for changes in MB87P2020-A added
AC Spec updated for MB87P2020-A

1.6 05. Apr 2002 AC Spec for MB87J2120 updated

1.7 22. Jul 2002 Description changed to MB87P2020-A

Table of Contents
Table of Contents

PART A - Lavender and Jasmine Overview

1 Overview . 15

1.1 Application overview. 15

1.2 Jasmine/Lavender Block Diagram. 15

2 Features and Functions . 19

3 Clock supply and generation. 21

4 Register and Command Overview . 23

4.1 Register Overview . 23

4.2 Command Overview . 23

PART B - Functional Descriptions

B-1 Clock Unit (CU) . 27

1 Functional Description . 29

1.1 Overview . 29

1.2 Reset Generation . 30

1.3 Register Set . 30

2 APLL Specification . 33

2.1 Definitions . 34

2.1.1 Phase Skew . 34

2.1.2 Duty. 34

2.1.3 Lock Up Time . 34

2.1.4 Jitter. 34

2.1.5 Variation in Output Cycle . 34

2.1.6 Maximum Power Consumption . 35

2.2 Usage Instructions . 35

3 Clock Setup and Configuration . 36

3.1 Configurable Circuitry . 36

3.2 Clock Unit Programming Sequence . 37

3.3 Application Notes . 38

B-2 User Logic Bus Controller (ULB) . 39
Table of Contents Page 3

MB87J2120, MB87P2020-A Hardware Manual
1 Functional description. .41

1.1 ULB functions . 41

1.2 ULB overview. 42

1.3 Signal synchronisation between MCU and display controller . 44

1.3.1 Write synchronization for Lavender and Jasmine . 44

1.3.2 Read synchronization . 45

1.3.3 DMA and interrupt signal synchronization . 45

1.3.4 Output signal configuration . 46

1.4 Address decoding . 46

1.4.1 Overview . 46

1.4.2 Register space . 47

1.4.3 SDRAM space . 49

1.4.4 Display controller bus access types (word, halfword, byte). 51

1.4.5 Display controller data modes (32/16 Bit interface) . 52

1.5 Command decoding and execution . 53

1.5.1 Command and data interface to MCU . 53

1.5.2 Command execution and programming . 55

1.5.3 Structure of command controller . 58

1.5.4 Display controller commands. 59

1.5.5 Registers and flags regarding command execution . 60

1.6 Flag and interrupt handling . 61

1.6.1 Flag and interrupt registers . 61

1.6.2 Interrupt controller configuration . 61

1.6.3 Interrupt generation . 62

1.6.4 Interrupt configuration example . 63

1.6.5 Display controller flags . 64

1.7 DMA handling . 64

1.7.1 DMA interface . 64

1.7.2 DMA modes . 64

1.7.2.1 Level triggered DMA (demand mode) . 65

1.7.2.2 Edge triggered DMA (block-,step-, burstmode) . 65

1.7.3 DMA settings . 66

1.7.4 DMA programming examples . 68

2 ULB register set .71

2.1 Description . 71

2.2 ULB initialization . 74

B-3 SDRAM Controller (SDC) . 75
Page 4

Table of Contents
1 Function Description . 77

1.1 Overview . 77

1.2 Arbitration . 78

1.3 SDRAM Timing . 78

1.4 Sequencer for Refresh and Power Down. 79

1.5 Address Mapping. 81

1.5.1 Elucidations regarding Address Mapping. 83

1.5.1.1 Block Structure of Pixel Data. 83

1.5.1.2 Access Methods and Devices . 84

1.5.1.3 Program Example . 86

1.5.1.4 Address Calculation - Example with concrete {X,Y} Pixel. 90

2 SDRAM Ports . 92

2.1 External SDRAM I-/O-Pads with configurable sampling Time (Lavender) 92

2.2 Integrated SDRAM Implementation (Jasmine) . 93

3 Configuration . 94

3.1 Register Summary . 94

3.2 Core clock dependent Timing Configuration . 95

3.2.1 General Setup . 95

3.2.2 Refresh Configuration for integrated DRAM (Jasmine). 95

B-4 Pixel Processor (PP). 97

1 Functional Description . 99

1.1 Overview . 99

1.1.1 PP Structure. 99

1.1.2 Function of submodules . 100

1.2 Configuration Registers . 101

1.3 Special Command Options . 103

1.3.1 Bitmap Mirror . 103

1.3.2 Bitmap Direction. 103

2 Format Definitions . 104

2.1 Legend of symbols. 104

2.2 Data Formats at ULB Interface . 105

2.3 Data Formats for Video RAM / SDC Interface . 106

B-5 Antialiasing Filter (AAF) . 109

1 Functional Description . 111
Table of Contents Page 5

MB87J2120, MB87P2020-A Hardware Manual
1.1 AAF Overview . 111

1.1.1 Top Level Structure . 111

1.1.2 AAU Function . 112

1.1.2.1 Super Sampling . 112

1.1.2.2 Drawing Resolution . 112

1.1.2.3 Data and Address Processing. 112

1.2 Configuration Registers . 113

1.3 Application Notes . 114

1.3.1 Restrictions due to Usage of AAF . 114

1.3.2 Supported Colour Formats . 115

1.3.3 Related SDC Configuration . 115

B-6 Direct and Indirect Physical Memory Access Unit (DIPA) 117

1 Overview. .119

2 Configuration Registers .121

2.1 Register List . 121

2.2 Recommended Settings . 121

2.3 Related Settings and Informations . 122

B-7 Video Interface Controller (VIC) . 123

1 Introduction .125

1.1 Video Interface Controller functions and features . 125

1.2 Video data handling . 125

2 VIC Description .127

2.1 Data Input Formats . 127

2.2 Data format in Video RAM (SDRAM). 129

2.3 Data Input Timing . 130

2.3.1 Videoscaler-Mode . 130

2.3.2 CCIR-Mode . 131

2.3.3 External-Timing-mode . 132

3 VIC settings .135

3.1 Register list . 135

3.2 Register Description . 139

B-8 Graphic Processing Unit (GPU) . 149

1 Functional Description .151
Page 6

Table of Contents
1.1 GPU Features . 151

1.2 GPU Overview. 152

1.2.1 Top Level Structure. 152

1.2.2 DFU Function . 152

1.2.3 CCU Function . 153

1.2.4 LSA Function . 154

1.2.5 BSF Function . 154

2 Color Space Concept . 156

2.1 Background . 156

2.2 Data Flow for Color Space Conversion within GPU. 156

2.3 Mapping from Logical to Intermediate Color Space . 157

2.4 Mapping from Intermediate to Physical Color Space . 157

3 GPU Control Information . 162

3.1 Layer Description Record . 162

3.2 Merging Description Record . 164

3.3 Display Interface Record . 165

3.4 Supported Physical Color Space / Bit Stream Format Combinations 167

3.5 Twin Display Mode . 167

3.6 Scan Modes . 168

3.7 YUV to RGB conversion . 171

3.7.1 YUV422 Demultiplexing and Chrominance Interpolation . 171

3.7.2 Matrix Multiplication . 172

3.7.3 Inverse Gamma Correction . 172

3.8 Duty Ratio Modulation . 173

3.8.1 Working Principle . 173

3.8.2 Usage. 174

3.9 Master Timing Information . 175

3.10 Generation of Sync Signals . 176

3.10.1 Overview . 176

3.10.2 Position Matching . 176

3.10.3 Sequence Matching . 177

3.10.4 Combining First-Stage Sync Signals . 178

3.10.5 Sync Signal Delay Adjustment . 180

3.11 Pixel Clock Gating. 180

3.12 Numerical Mnemonic Definitions . 181

3.12.1 Color Space Code . 181

3.12.2 Bit Stream Format Code . 182

3.12.3 Scan Mode Code . 182
Table of Contents Page 7

MB87J2120, MB87P2020-A Hardware Manual
3.13 Bit to Color Channel Assignment . 183

3.14 GPU Signal to GDC Pin Assignment . 184

3.14.1 Multi-Purpose Digital Signals . 184

3.14.2 Analog Pixel Data. 184

3.14.3 Dedicated Sync Signals . 184

3.14.4 Sync Mixer connections . 185

3.14.5 Color Key Output . 185

4 GPU Register Set .187

4.1 Description . 187

4.2 Determination of Register Contents . 194

4.2.1 Values Derived from Display Specs. 194

4.2.2 Values Determined by Application . 196

4.2.3 User preferences . 197

4.3 GPU Initialization Sequence . 197

5 Bandwidth Considerations .198

5.1 Processing Bandwidth . 198

5.1.1 Average Bandwidth . 198

5.1.2 Peak Bandwidth . 198

5.2 Memory Bandwidth . 200

5.2.1 Average Bandwidth . 201

5.2.2 Peak Bandwidth . 201

5.3 Recommendations . 202

6 Functional Peculiarities. .204

6.1 Configuration Constraints . 204

6.2 Bandwidth . 204

6.3 Image Processing . 205

6.4 Data Output . 206

6.5 Diagnostics . 206

7 Supported Displays .207

7.1 Passive Matrix LCD . 208

7.2 Active Matrix (TFT) Displays . 209

7.3 Electroluminescent Displays . 210

7.4 Field Emission Displays . 211

7.5 Limitations for support . 212

7.5.1 No Support due to VCOM Inversion . 212

7.5.2 Problems due to 5V CMOS Interfaces . 212
Page 8

Table of Contents
B-9 Cold Cathode Fluorescence Light Driver (CCFL) 213

1 Introduction . 215

2 Signal Waveform . 217

2.1 General Description . 217

2.2 Duration of the Phases . 217

2.3 Pulse shape of FET1 and FET2 . 218

3 Register Description. 219

3.1 Overview . 219

3.2 Control Bits . 219

4 Application Notes . 221

4.1 CCFL Setup Example . 221

4.2 CCFL Protection . 221

PART C - Pinning and Electrical Specification

1 Pinning and Buffer Types . 225

1.1 Pinning for MB87P2020-A . 225

1.1.1 Pinning . 225

1.1.2 Buffer types . 238

1.2 Pinning for MB87P2020 . 238

1.2.1 Pinning . 238

1.2.2 Buffer types . 251

1.3 Pinning for MB87J2120. 252

1.3.1 Pinning . 252

1.3.2 Buffer Types . 268

2 Electrical Specification . 270

2.1 Maximum Ratings . 270

2.1.1 Power-on sequence . 270

2.1.2 External Signal Levels . 271

2.1.3 APLL Power Supply Level . 271

2.1.4 DAC supply. 271

2.1.5 SDRAM Supply . 271

2.2 Recommended Operating Conditions . 272

2.3 DC Characteristics . 272

2.4 Mounting / Soldering . 274

2.5 AC Characteristics . 275
Table of Contents Page 9

MB87J2120, MB87P2020-A Hardware Manual
2.5.1 Measurement Conditions . 275

2.5.2 Definitions . 275

2.5.3 Clock inputs . 276

2.5.4 MCU User Logic Bus Interface . 278

2.5.5 Interrupt . 280

2.5.6 DMA Control Ports . 281

2.5.7 Display Interface . 282

2.5.8 Video Input . 283

2.5.9 CCFL FET Driver. 283

2.5.10 Serial Peripheral Bus . 284

2.5.11 Special and Mode Pins . 284

2.5.12 SDRAM Ports (Lavender) . 284

PART D - Appendix

D-1 Jasmine Command and Register Description. 289

1 Register Description .291

2 Flag Description. .319

3 Command Description .323

3.1 Command List . 323

3.2 Command and I/O Control . 330

D-2 Hints and restrictions for Lavender and Jasmine 331

1 Special hints .333

1.1 IPA resistance against wrong settings. 333

1.2 ULB_DREQ pin timing to host MCU . 333

1.3 CLKPDR master reset. 334

1.4 MAU (Memory Access Unit) commands . 334

1.5 Pixel Processor (PP) double buffering . 335

1.6 Robustness of ULB_RDY signal . 336

1.7 Robustness of command pipeline against software errors . 337

1.8 DMA resistance against wrong settings . 337

2 Restrictions. .339

2.1 ESD characteristics for I/O buffers . 339

2.2 Command FSM . 341

2.3 GPU mastertiming synchronization . 341
Page 10

Table of Contents
2.4 Read limitation for 16 Bit data interface to MCU . 342

2.5 SDC sequencer readback . 344

2.6 Direct SDRAM access with 16bit and 8bit data mode . 344

2.7 Input FIFO read in 16bit mode . 345

2.8 ULB_DSTP pin function . 345

2.9 Software Reset for command execution . 346

2.10 AAF settings double buffering . 347

2.11 Pixel Engine (PE) Commands . 348

2.12 Pixel read back commands (GetPixel, XChPixel) . 349

2.13 Display Interface Re-configuration . 351

D-3 Abbreviations. 353
Table of Contents Page 11

MB87J2120, MB87P2020-A Hardware Manual
Page 12

PART A - Lavender and Jasmine
Overview
Page 13

MB87J2120, MB87P2020-A Hardware Manual
Page 14

Graphic Controller Overview
1 Overview

1.1 Application overview

The MB87J2120 "Lavender" and MB87P2020-A “Jasmine” are colour LCD/CRT graphic display control-

lers (GDCs)1 interfacing to MB91xxxx micro controller family and support a wide range of display devices.
The architecture is designed to meet the low cost, low power requirements in embedded and especially in

automotive2 applications.

Lavender and Jasmine support almost all LCD panel types and CRTs or other progressive scanned3 moni-
tors/displays which can be connected via the digital or analog RGB output. Products requiring video/camera
input can take advantage of the supported digital video interface. The graphic instruction set is optimized
for minimal traffic at the MCU interface because it’s the most important performance issue of co-processing
graphic acceleration systems. Lavender uses external connected SDRAM, Jasmine is a compatible GDC
version with integrated SDRAM (1MByte) and comes with additional features.

Lavender and Jasmine support a set of 2D drawing functions with built in Pixel Processor, a video scaler
interface, units for physical and direct video memory access and a powerful video output stream formatter
for the greatest variety of connectable displays.

Figure 1-1 displays an application block diagram in order to show the connection possibilities of Jasmine.
For Lavender external SDRAM connection is required in addition.

1.2 Jasmine/Lavender Block Diagram

Figure 1-2 shows all main components of Jasmine/Lavender graphic controllers. The User Logic Bus con-
troller (ULB), Clock Unit (CU) and Serial Peripheral Bus (SPB) are connected to the User Logic Bus inter-
face of 32 bit Fujitsu RISC microprocessors. 32 and 16 bit access modes are supported.

1. The general term ’graphic display controller’ or its abbreviation ’GDC’ is used in this manual to identify both
devices. Mainly this is used to emphasize its common features.

2. Both display controllers have an enhanced temperature range of -40 to 85 oC.

3. TV conform output (interlaced) is also possible with half the vertical resolution (line doubling).

Table 1-1: GDC components

Shortcut Meaning Main Function

CCFL Cold Cathode Fluorescence
Lamp

Cold cathode driver for display backlight

CU Clock Unit Clock gearing and supply, Power save

DAC Digital Analog Converter Digital to analog conversion for analog
display

DPA (part of DIPA) Direct Physical memory Access Memory mapped SDRAM access with
address decoding

GPU Graphics Processing Unit Frame buffer reader which converts to
video data format required by display

DFU (part of GPU) Data Fetch Unit Graphic/video data acquisition

CCU (part of GPU) Colour Conversion Unit Colour format conversion to common
intermediate overlay format
Overview Page 15

MB87J2120, MB87P2020-A Hardware Manual
LSA (part of GPU) Line Segment Accumulator Layer overlay

BSF (part of GPU) BitStream Formatter Intermediate format to physical display
Format converter, Sync generation

IPA (part of DIPA) Indirect Physical memory Access SDRAM access with command register
and FIFO

MAU (part of PP) Memory Access Unit Pixel access to video RAM

MCP (part of PP) Memory CoPy Memory to memory copying of rectan-
gular areas

PE (part of PP) Pixel Engine Drawing of geometrical figures and bit-
maps

PP Pixel Processor Graphic oriented functions

SDC SDRAM Controller SDRAM access and arbitration

SPB Serial Peripheral Bus Serial interface (master)

ULB User Logic Bus (see MB91360
series specification)

Address decoding, command control,
flag, interrupt and DMA handling

Table 1-1: GDC components

Shortcut Meaning Main Function

Host MCU

e.g. VPX3220A, SAA7111A

MB91xxxx

Video Scaler

Digital Video

RGB Analog

MB87P2020 or MB87J2120

(Jasmine or Lavender)

Figure 1-1: Application overview
Page 16

Graphic Controller Overview
The ULB provides an interface to host MCU (MB91360 series). The main functions are MCU (User Logic
Bus) control inclusive wait state handling, address decoding and device controls, data buffering / synchro-
nisation between clock domains and command decoding. Beside normal data and command read and write
operation it supports DMA flow control for full automatic data transfer from MCU to GDC and vice versa.
Also an interrupt controlled data flow is possible and various interrupt sources inside the graphics controller
can be programmed.

The Clock Unit (CU) provides all necessary clocks to module blocks of GDC and a FR compliant (ULB)
interface to host MCU. Main functions are clock source select (XTAL, ULB clock, display clock or special
pin), programmable clock multiplier/divider with APLL, power management for all GDC devices and the
generation of synchronous RESET signal.

For Fujitsu internal purposes one independent macro is build in the GDC ASIC, the Serial Peripheral Bus
(SPB). It’s a single line serial interface. There is no interaction with other GDC components.

All drawing functions are executed in Pixel Processor (PP). It consists of three main components Pixel En-
gine (PE), Memory Access Unit (MAU) and Memory Copy (MCP). All functions provided by these blocks
are related to operations with pixel addresses {X, Y} possibly enhanced with layer information. GDC sup-
ports 16 layers by hardware, four of them can be visible at the same time. Each layer is capable of storing

VIC Video Interface Controller YUV-/RGB-Interface to video grabber

Table 1-1: GDC components

Shortcut Meaning Main Function

User Logic Bus Interface (ULB)

Command Control

Video
DACs

Clock
Unit

CCFL

SPB
(CU)

Anti Aliasing Filter (AAF)

Pixel
Engine
(PE)

CCUMAU MCP DIPA VIC DFU LSA BSF

SDRAM Controller (SDC)

Pixel Processor (PP)

User Logic Bus

XTAL

BUS

PIX

Video Scaler Interface

Light
Back

Analog
Video

Digital
Video

Serial

MB87P2020 (Jasmine)

Graphic Processing Unit (GPU)

MB87J2120 (Lavender)

Embedded DRAM (1MByte) or external SDRAM (8MByte)

Figure 1-2: Component overview for Lavender and Jasmine graphic controllers
Overview Page 17

MB87J2120, MB87P2020-A Hardware Manual
any data type (graphic or video data with various colour depths) only restricted by the bandwidth limitation
of video memory at a given operating frequency.

Drawing functions are executed in the PE by writing commands and their dedicated parameter sets. All
commands can be taken from the command list in section 4.2. Writing of uncompressed and compressed
bitmaps/textures, drawing of lines, poly-lines and rectangles are supported by the PE. There are many spe-
cial modes such as duplicating data with a mirroring function.

Writing and reading of pixels in various modes is handled by MAU. Single transfers and block or burst
transfers are possible. Also an exchange pixel function is supported.

With the MCP unit it is possible to transfer graphic blocks between layers of the same colour representation
very fast. Only size, source and destination points have to be given to duplicate some picture data. So it of-
fers an easy and fast way to program moving objects or graphic libraries.

All PP image manipulation functions can be fed through an Antialiasing Filter (AAF). This is as much faster
than a software realisation. Due to the algorithm which shrinks the graphic size by two this has to be com-
pensated by doubling the drawing parameters i.e. the co-ordinates of line endpoints.

DIPA stands for Direct/Indirect Physical Access. This unit handles rough video data memory access with-
out pixel interpretation (frame buffer access). Depending on the colour depth (bpp, bit per pixel) one or
more pixel are stored in one data word. DPA (Direct PA) is a memory-mapped method of physical access.
It is possible in word (32 bit), half word (16 bit) or byte mode. The whole video memory or partial window
(page) can be accessed in a user definable address area of GDC. IPA (Indirect PA) is controlled per ULB
command interface and IPA access is buffered through the FIFOs to gain high access performance. It uses
the command GetPA and PutPA, which are supporting burst accesses, possibly handled with interrupt and
DMA control.

For displaying real-time video within the graphic environment both display controllers have a video inter-
face for connection of video-scaler chips, e.g Intermetall’s IC VPX32xx series or Phillips SAA711x. Addi-
tionally the video input of Jasmine can handle CCIR standard conform digital video streams.
Several synchronisation modes are implemented in both controllers and work with frame buffering of one
up to three pictures. With line doubling and frame repetition there exist a large amount of possibilities for
frame rate synchronisation and interlaced to progressive conversion as well. Due to the strict timing of most
graphic displays the input video rate has to be independent from the output format. So video data is stored
as same principles as for graphic data using up to three of the sixteen layers.

The SDC is a memory controller, which arbitrates the internal modules and generates the required access
timings for SDRAM devices. With a special address mapping and an optimized algorithm for generating
control commands the controller can derive full benefit from internal SDRAM. This increases performance
respective at random (non-linear) memory access.

The most complex part of GDC is its graphic data processing unit (GPU). It reads the graphic/video data
from up to four layers from video memory and converts it to the required video output streams for a great
variety of connectable display types. It consists of Data Fetch Unit (DFU), Colour Conversion Unit (CCU)
which comes with 512 words by 24-bit colour look up table, Line Segment Accumulator (LSA) which does
the layer overlay and finally the Bitstream Formatter (BSF). The GPU has such flexibility for generating
the data streams, video timings and sync signals to be capable of driving the greatest variety of known dis-
play types.

Additional to the digital outputs video DACs provide the ability to connect analog video destinations. A
driver for the displays Cold Cathode Fluorescence Lamp (CCFL) makes the back light dimmable. It can be
synchronized with the vertical frequency of the video output to avoid visible artefacts during modulating
the lamp.
Page 18

Graphic Controller Overview
2 Features and Functions

Table 2-1: Lavender and Jasmine features in comparison

MB87J2120 (Lavender) MB87P2020-A (Jasmine)

General features

• 2M words x 32 Bit external SDRAM
(64 Mbit)

• no internal SDRAM

• 256k words x 32 Bit internal SDRAM
(8 Mbit)

• Package: BGA-256P-M01 • Package: FPT-208P-M06

• Chip select sharing for up to four GDC devices

• synchronized reset (needs applied clock) • immediate asynchronous reset, synchronized
reset release

Pixel manipulation functions

• 2D Drawing and Bitmap Functions

- Lines and Polygons

- Rectangular Area

- Uncompressed Bitmap/1bit pixelmask

- Compressed Bitmap (TGA format)/1bit pixelmask

• Pixel Memory Access Functions

- Put Pixel

- Put Pixel FC (fixed colour)

- Put Pixel Word (packed)

- Exchange Pixel

- Get Pixel

• Layer Register for text and bitmap functions • Layer Register enhancement for drawing func-
tions (simplifies pixel addressing)

• Copy rectangular areas between layers

• Anti Aliasing Filter (AAF)

- resolution increase by factor 2 for each di-
mension (2x2 filter operator size)

• Additional 4x4 AAF operator size

Display

• Free programmable Bitstream Formatter for a
great variety of supported displays (single/
dual/alternate scan):

- Passive Matrix LCD (single/dual scan)

- Active Matrix (TFT) Displays

- Electroluminescent Displays

- Field Emission Displays

- TV compatible output

- CRTs...

• Additional Twin Display Mode feature (simul-
taneous digital and analog output without lim-
itation of DIS_D[23:16] that carry special sync
signals).

• 24 bit digital video output (RGB)
Features and Functions Page 19

MB87J2120, MB87P2020-A Hardware Manual
• On-Chip Video DAC, 50M Samples/s (dot clock)

• Flexible three-stage sync signal programming (trigger position/sequence, combining and delay) for
up to 8 signal outputs

• Colour keying between two limits

• Brightness modulation for displays with a Cold Cathode Fluorescence Lamp back-light

• Display resolution/drawing planes up to 16383 pixels for each dimension

• 4 layer + background colour simultaneous display and graphic overlay, programmable Z-order

• Blinking, transparency and background attributes

• Free programmable display section of a layer

• Separable Colour LUT with
256 entries x 24 Bit

• Colour LUT expansion to 512 entries

• Duty Ratio Modulation (DRM) for pseudo hue/grey levels

• Hardware support for 16 layers, usable for graphic/video without restrictions

• Performance sharing with adjustable priorities and configurable block sizes for memory transfers en-
able maximal throughput for a wide range of applications

• Variable and display independent colour space
concept: Layers with 1, 2, 4, 8, 16, 24 bit per
pixel can be mixed and converted to one dis-
play specific format (logical-intermediate-
physical format mapping)

• Additional GPU a YUV to RGB converter in
order to allow YUV coded layers

• Additional Gamma correction RAMs are in-
cluded (3x256x8Bit)

Physical SDRAM access

• Memory mapped direct physical access for storage of non-graphics data or direct image access

• Indirect physical memory access for high bandwidth multipurpose data/video memory access

MCU interface

• 32/16 Bit MCU interface, designed for direct connection of MB91xxxx family (8/16/32Bit access)

• DMA support (all MB91xxxx modes)

• Interrupt support

Video interface

• Video interface VPX32xx series by Micronas
Intermetall, Phillips SAA711x and others

• Additional CCIR conform input mode

• Video synchronization with up to 3 frame buffers

Clock generation

• Flexible clocking concept with on-chip PLL and up to 4 external clock sources:

- XTAL

- ULB bus clock

- Pixel clock

- Additional external clock pin (MODE[3]/RCLK)

• Separate power saving for each sub-module

Table 2-1: Lavender and Jasmine features in comparison

MB87J2120 (Lavender) MB87P2020-A (Jasmine)
Page 20

Graphic Controller Overview
3 Clock supply and generation

GDC has a flexible clocking concept where four input clocks (OSC_IN/OUT, DIS_PIXCLK, ULB_CLK,
RCLK) can be used as clock source for Core clock (CLKK) and Display clock (CLKD).

The user can choose by software whether to take the direct clock input or the output of an APLL independ-
ent for Core- and Display clock. Both output clocks have different dividers programmable by software
(DIV x for CLKD and DIV z for CLKK). The clock gearing facilities offer the possibility to scale system
performance and power consumption as needed.

Beside these two configurable clocks (CLKK and CLKD) GDC needs two additional internal clocks:
CLKM and CLKV (see also figure 3-1). CLKV is exclusively for video interface and is connected to input
clock pin VSC_CLKV. CLKM is used for User Logic Bus (ULB) interface and is connected to input clock
ULB_CLK. As already mentioned ULB_CLK can also be used to build CLKK and/or CLKD.

Table 3-1 shows all clocks used by GDC with their requirements.

Table 3-1: Clock supply

Clock Type Symbol Requirements Unit

Min Typ Max

XTAL clock input OSC_IN, OSC_OUT 12a - 64 MHz

Reserve clock input RCLK ULB_CLKb - 64 MHz

ULB clock input ULB_CLK - - 64 MHz

Pixel clock input DIS_PIXCLK - - 54 MHz

Video clock input VSC_CLKV - - 54c MHz

Core clock internal CLKK ULB_CLK - 64 MHz

Display clock internal CLKD - - 54 MHz

Video clock internal CLKV - - 54c MHz

ULB clock internal CLKM - - 64 MHz

(Jasmine only)

MUL y

DIV x

DIV z

IN
V

IN
V

OSC_IN/OUT

DIS_PIXCLK

ULB_CLK

RCLK

PLL Clock

Direct Clock

VSC_CLKV

System Clock Prescaler

Pixel Clock Prescaler

invert option

invert option

CLKK

CLKM

CLKV

CLKD

APLL

Figure 3-1: Clock gearing and distribution
Clock supply and generation Page 21

MB87J2120, MB87P2020-A Hardware Manual
a. If used as PLL input. APLL input frequency has to be at minimum 12 MHz, regardless which clock is routed
to APLL.

b. If used as direct clock source bypassing the APLL, the user should take care that resulting core clock fre-
quency is above or equal to MCU bus interface clock. Be aware of tolerances!

c. The video interface is designed to achieve 54 MHz but there is a side condition that video clock should be
smaller than half of core clock.
Page 22

Graphic Controller Overview
4 Register and Command Overview

4.1 Register Overview

The GDC device is mainly configurable by registers. These configuration registers are mapped in a
64 kByte large address range from 0x0000 to 0xffff. It is possible to shift this register space in steps of
64 kByte by the Mode[1:0] pins in order to connect multiple GDC devices.

Above this 4*64 kByte = 256 kByte address range the SDRAM video memory could be made visible for
direct physical access.

At byte address 0x1f:ffff GDC memory map ends with a total size of 2 MByte.

4.2 Command Overview

The command register width is 32 Bit. It is divided into command code and parameters:

Partial writing (halfword and byte) of command register is supported. Command execution is triggered by
writing byte 3 (code, bits [7:0]). Thus parameters should be written before command code.

Not all commands need parameters. In these cases parameter section is ignored.

In table 4-1 all commands are listed with mnemonic, command code and command parameters (if neces-
sary. This is only a short command overview, a more detailed command list can be found in appendix.

Table 4-1: Command List

Mnemonic Code Function Addressed
device

Bitmap and Texture Functions

PutBM 01H Store bitmap into Video RAM Pixel Processor

PutCP 02H Store compressed bitmap into Video RAM

PutTxtBM 05H
Draw uncompressed texture with fixed foreground
and background colour

PutTxtCP 06H
Draw compressed texture with fixed foreground and
background colour

Drawing Functions (2D)

DwLine 03H
"Draw a line" - calculate pixel position and store
LINECOL into Video RAM

Pixel Processor

DwPoly 0FH
"Draw a polygon" - draws multiple lines between
defined points, see DwLine

DwRect 04H
"Draw an rectangle" - calculate pixel addresses and
store RECTCOL into Video RAM

Pixel Operations

07

code

31

parameters
Register and Command Overview Page 23

MB87J2120, MB87P2020-A Hardware Manual
PutPixel 07H Store single pixel data into Video RAM Pixel Processor

PutPxWd 08H Store word of packed pixels into Video RAM

PutPxFC 09H Store fixed colour pixel data in Video RAM

GetPixel 0AH Load pixel data from Video RAM

XChPixel 0BH
Load old pixel in Output FIFO and store pixel from
Input FIFO into Video RAM

Memory to Memory Operations

MemCopy 0CH
Memory Copy of rectangular area. Transfer of bit-
maps from one layer to another or within one layer.

Pixel Processor

Physical Framebuffer Access

PutPA 0DH
Store data in physical format into Video RAM, with
physical address auto-increment

DIPA

GetPA <n>,0EH
Load data in physical format from Video RAM with
address auto-increment, stop after n words

System Control Commands

SwReset 00H
Stop current command immediately, reset command
controller and FIFOs

All drawing and
access devices

NoOp FFH
No drawing or otherwise operation, finish current
command and flush buffers

Command Con-
trol (ULB)

Table 4-1: Command List

Mnemonic Code Function Addressed
device
Page 24

PART B - Functional Descriptions
Page 25

MB87J2120, MB87P2020-A Hardware Manual
Page 26

B-1 Clock Unit (CU)
Page 27

MB87J2120, MB87P2020-A Hardware Manual
Page 28

Clock Unit
1 Functional Description

1.1 Overview

The clock unit (CU) provides all necessary clocks to GDC modules and an own interface to host MCU
(MB91360 series) in order to have durable access even if ULB clocks switched off.

The main functions of CU are:

• Clock source select (Oscillator, MCU Bus clock, Display clock and a reserve clock input)

• Programmable clock muliplier with APLL

• Separate dividers for master (core) clock and pixel clock

• Power management for all GDC modules

• Generation of synchronized RESET signal

• MB91360 series compliant (ULB) Bus interface for clock setup

Figure 1-1 shows the overview of the Clock Unit. OSC_IN, DIS_PIXCLK, ULB_CLK and RCLK1 are pos-
sible to use as input sources. Both clock outputs of the main unit (MASTERCLK and PIXELCLK) and two
directly used clock inputs (ULB_CLK and VSC_CLKV) driving the clock gates unit which distributes to
all connected GDC sub-modules.

1. MODE[3] pin is used for RCLK at Lavender

ULB

ULB

Register Set Clock Gates

Main Unit

Reset Generator

U
se

r
L

o
g

ic
 B

u
s

Address Decoder

Clk[Con|Pd]R_[rd|wr]

RSTX

RSTX

ClkConR

MASTERCLK

PIXELCLK

RSTX

MCP_CLK_OUT

VIS_CLKV_OUT

SPB_CLKM_OUT
ULB_CLK_OUT
ULB_CLKM_OUT

SPB_CLKMX_OUT

ULB_CLKMX_OUT

LOCK

ClkPdR

SW_RST

SYNC_RSTX_CU

[15]

in
ve

rt
ed

 c
lo

ck
 o

ut
pu

ts
no

t i
nv

er
te

d
cl

oc
k

ou
tp

ut
s

SYNC_RSTX

[11]

PE_CLKK_OUT
MAU_CLKK_OUT

K
PP_CLKK_OUT
AAF_CLKK_OUT
DIPA_CLKK_OUT
VIS_CLKK_OUT

SDC_CLKK_OUT
CCFL_CLKK_OUT

GPUF_CLKK_OUT
GPUM_CLKK_OUT
GPUB_CLKK_OUT
PIX_CLKD_OUT

ULB_CLKKX_OUT

O
S

C
_I

N

D
IS

_P
IX

C
LK

R
C

LK

U
LB

_C
LK

V
S

C
_C

LK
V

OSC_IN

ULB_CLK

RESETX

_A

_RDX

_WRX

_CSX

_CLK

_D
_A
_WRX
_CLK

Figure 1-1: Block diagram of Clock Unit
Functional Description Page 29

MB87J2120, MB87P2020-A Hardware Manual
The GDC device has four different clock domains, that means clocks derived from four different sources.
The largest part of the design runs at core clock which operates at the highest frequency driven by the MAS-
TERCLK output. Thus normally the APLL is used to provide a higher internal operation frequency. The
next domain is the display output interface which operates at pixel clock frequency. For most applications

it is recommended that this is the clock from OSC_IN pin, divided by two1. So the crystal oscillator has to
be choosen to have a whole-numbered multiple of the display clock frequency. Preferred routing is the DI-
RECT clock source channel since some displays require a small clock jitter which is not able to provide by
the APLL. The other clocks for MCU interface (ULB_CLK) and video interface (VSC_CLKV) are not de-
rived by the clock routing and generating part and used directly from the appropriate input pin.

Finally the generated source clocks of the for domains go to the clock gating/distribution module. There are
gated clock buffers and inverters for each GDC module implemented. Each module has it’s own clock en-
able flag which can be programmed for modules needed by the application only. This method saves power
of not used functional blocks of GDC (refere to table 3-1).

The configuration of CU is stored in two registers, ClkConR and ClkPdR, which are connected to User Log-
ic Bus for writing and reading. The bus interface consists of an address decoder and circuitry for different
access types (word, halfword and byte access over a 16 or 32 bit bus connection).

1.2 Reset Generation

GDC works with an internally synchronized, low active reset signal. The global chip reset can be triggered
by an external asynchronous reset or internally by software reset (configuration bit in ClkPdR). The external
triggered RESETX results in resetting all GDC components including the Clock Unit, however software
reset has no influence on CU internal registers.

Lavender synchronizes its external reset (RSTX pin). Reset is delayed until 4 clock cycles of each
ULB_CLK and OSC_IN are executed. This gives stability against spikes on the RSTX line but has the dis-
advantage of delayed reset response of Lavender.

For Jasmine internal reset is active immediately after tying RESETX low plus a small spike filter delay. Due
to the synchronization of RESETX the internal reset state ends after 4 clock periods of OSC_IN and 4 clock
periods of ULB_CLK after releasing RESETX pin. Reset output RSTX_SYNC for all internal GDC register
states are synchronized with OSC_IN, however internal Clock Unit registers are synchronized with
ULB_CLK in addition. Thus a minimum recovery time of 4 clock cycles of OSC_IN plus 4 cycles of
ULB_CLK is needed before writing to Clock Unit configuration registers is possible after RESETX be-
comes inactive.

The reset generator of Jasmine has a spike filter implemented, which suppresses short low pulses, typical
smaller than 9 ns. Under best case operating conditions (-40 deg. C; 2.7V; fast) maximum suppressed spike
width is specified to 5.5ns. This is the maximum reset pulse width which did not result in resetting the GDC
device. Minimum pulse width for guaranteed reset is specified to 1 clock cycle of OSC_IN (80 ns typical).

1.3 Register Set

Table 1-1 listst the clock setup registers. ClkConR (Clock Configuration Register) is mainly for generation
of the base clocks and the routing/selection from one of the four input sources. It controls the clock dividers
and the use of the APLL. The possibility to use a second clock path, called direct clock source, gives a high
flexibility for using the APLL either for MASTERCLK or PIXELCLK generation or both. Also the pin
function of DIS_PIXCLK can be defined in this register. If DIS_PIXCLK is selected as clock source the
pin should be configured as an input.

Upper 8 bits of ClkConR are used as identification of the different GDC types. Lavender is identified with
reading back a ’0x00’, Jasmine with a ’0x01’.

Use of DIS_PIXCLK as pixel clock output and selection of DIS_PIXCLK for the clock source can result in
unintentional feedbacks and has to be avoided.

1. Preferred is an even divider value to achive 50% clock duty
Page 30

Clock Unit
ClkPdR (Clock Power Down Register) is a set of enable bits for the clocks provided to the dedicated GDC
modules. A bit set to ’1’ means the clock is enabled. If a module requires multiple clocks (inverted ones or
different domains) the enable bit switches all these lines.

Additional ClkPdR controls the work of the PLL and gives status information about it’s lock-state. Also a
global GDC reset function can be executed by setting a configuration bit of this register.

Table 1-1: CU registers

Register Bit Function Description Reset
Value

ClkConR [31:30] Direct Clock Source 00 Crystal oszillator (reset default)
01 Pixel clock
10 MCU Bus clock

11 reserved clock input (RCLKa)

"00"

[29:24] System clock prescaler
(DIV z)

[5:0] system clock prescaler value 0

[23:22] PLL Clock Source 00 Crystal oszillator (reset default)
01 Pixel clock
10 MCU Bus clock
11 reserved clock input (RCLK)

"00"

[21:16] PLL Feedback divider
(DIV y)

[5:0] pll multiplier value 0

[15] System Clock Select 0 Direct
1 PLL output

’0’

[14] Pixel Clock Select 0 Direct
1 PLL output

’0’

[13] Inverted Pixel Clock 0 not inverted
1 inverted

’0’

[12] Output disable
DIS_PIXCLK

0 internal pixelclock (output)
1 external pixelclock (input), high-Z
output

’1’

[11] reserved test operationb 0 normal operation
1 core clock output on pin SPB_TST

’0’

[10:0] Pixel clock prescaler
(DIV x)

[10:0] pixelclock prescaler value 0
Functional Description Page 31

MB87J2120, MB87P2020-A Hardware Manual
ClkPdR 0 PP/PE Pixel engine clock
enable

0 = disable, 1 = enable ’0’

1 PP/MAU clock enable 0 = disable, 1 = enable ’0’

2 PP/MCP clock enable 0 = disable, 1 = enable ’0’

3 AAF clock enable 0 = disable, 1 = enable ’0’

4 DIPA clock enable 0 = disable, 1 = enable ’0’

5 VIS clock enable 0 = disable, 1 = enable ’0’

6 SDC clock enable 0 = disable, 1 = enable ’0’

7 CCFL clock enable 0 = disable, 1 = enable ’0’

8 SPB clock enable 0 = disable, 1 = enable ’0’

9 ULB clock enable 0 = disable, 1 = enable ’0’

10 GPU clock enable 0 = disable, 1 = enable ’0’

11 PLL enable 0 = power down , 1 = run mode ’0’

12 VIC clock invert
(Jasmine)

0 = not inverted, 1 = inverted ’0’

PLL Lock (Lavender) 0 = unlocked, 1 = locked (read only)c

13 reserved - ’0’

14 PLL Lock (Jasmine) 0 = unlocked, 1 = locked (read only)b ’0’

15 Global HW Reset 0 = run mode, 1 = reset (write only)d ’0’

[31:24] Chip Id 0 = Lavender, 1 = Jasmine (read only) -

a.RCLK is mapped on MODE[3] at Lavender.

b.Only applicable for Jasmine

c.Normally all register bits are read-write. As the PLL lock bit is status information only, no write
access is possible to it. The lock bit is for test operation only and should not be used.
d.Read access results always in a value of ’0’. Writing ’1’ starts global HW Reset function, writ-
ing ’0’ releases reset.

Table 1-1: CU registers

Register Bit Function Description Reset
Value
Page 32

Clock Unit
2 APLL Specification

This informations are for implemented APLL - U1PN741A. Output range is given for APLL output direct-
ly, not for the divider outputs.

The APLL macro has an operating supply voltage (VDD) of 2.5 0.25V. The oscillation guaranteed frequen-
cy range, maximum output frequency range and operating junction temperature range of the APLL are
shown in the table below.

Table 2-1: APLL Specifications

Operating Junction Temperature (Tj) -40 to 125 deg. C

Voltage supply (VDDI) 2.5 V +/- 0.25 V

Oscillation guaranteed frequency range 120 to 208.4 MHz

Maximum output frequency rangea

a.Range in which oscillation may be possible.

5.77 to 598.1 MHz

Input Frequency range 12 to 160 MHz

Table 2-2: APLL Characteristics for guaranteed design range

Input
[MHz]

FB
divider

Out-
put

[MHz]

Phase
Skew
[ps]

Duty
[%]

Lock Up
Time [us]

Jitter
[ps]

Variations
in output
cycle [ps]

Power con-
sumption

[mW]

25 8 200 444
-448

100.5
87.9

70 176
-142

+130
-134

2.45

20a

a.Operating temperature -20 ... 90 deg. C, operating voltage 2.5 V +/- 0.15 V.

8 160 540
-520

102.6
94

100 232
-168

+64
-170

1.9

13.217b

b.Operating temperature -40 ... 125 deg. C.

10 132.17 1200
-1360

104.4
99.33

500 420
-246

+234
-278

1.88

12b 10 120 1334
-1466

111.1
100.7

25 760
-560

480
-560

1.793

40b 4 160 640
-700

105.9
101.5

20 350
-190

238
-304

1.147

23.5b 8 188 740
-940

110.6
97.2

65 208
-162

160
-182

2.387

33b 6 198 560
-540

100.4
88

165 172
-140

148
-180

2.397

160b 1 160 240
-150

101.2
98.9

12 190
-140

110
-140

1.147

50b 4 200 340
-280

98.5
87.7

26 148
-140

96
-120

2.45

20b 10 200 3600
-4200

109.5
87.5

88 560
-360

420
-480

2.45
APLL Specification Page 33

MB87J2120, MB87P2020-A Hardware Manual
2.1 Definitions

2.1.1 Phase Skew

Maximum phase differences between reference clock and feed back clock measured by the CK pin of the
PLL and the feedback clock measured by the FB pin.

2.1.2 Duty

Duty is the maximum and minimum values indicated by the ratio of a high pulse width to a low pulse with
(Tlow to Thigh) in one cycle of the output clock measured by the X pin of the PLL.

2.1.3 Lock Up Time

Lock up time is the time period that starts when the S pin of the PLL changes from 0 to 1 and ends when
the PLL is locked.

2.1.4 Jitter

Jitter is the maximum and minimum values for cycle variations (T2-T1, T3-T2 and T4-T3) in two continuous
cycles measured by the X pin of the PLL.

2.1.5 Variation in Output Cycle

The max./min. time periods from the rising edge of the output clock to thenext rising edge measured by the
X pin of the PLL. Observation points: 1400. The max./min values in T1, T2, T3 and T4 in above figure.

FB

CK

X

T Thigh low

lock up time

S

L

X
T1 T2 T3 T4
Page 34

Clock Unit
2.1.6 Maximum Power Consumption

This is the maximum power consumption of the PLL when PLL is in locked state. The power dissipated by
extrenal dividers is not included into this amount.

2.2 Usage Instructions

• Input the clock of crystal oscillator level into the CK pin of the PLL. Variations in the input clock
directly affects the PLL output, leading to unconformity to the specifications.

• In addition to the normal power supply, the PLL has a power supply for VC0 (pin name:
APLL_AVDD, APLL_AVSS). The VC0 power supply should be separate from other power supplies.
APLL Specification Page 35

MB87J2120, MB87P2020-A Hardware Manual
3 Clock Setup and Configuration

3.1 Configurable Circuitry

Clock configuration can be easily done by setting up both registers ClkConR (Clock Configuration Regis-
ter) and ClkPdR (Clock Power Down Register). ClkConR mainly controls the setup of multiplexers and
clock dividers in the main part of CU, which is shown in figure 3-1.

ClkPdR decides which clocks should be enabled and distributed to the appropriate modules, listed in table
2-1. During change of ClkConR all enable bits in ClkPdR[10:0] have to be turned off to attain spike protec-
tion.

Table 3-1: Mapping of clock sources, outputs and their enable bits

ClkPdR Control Bit Clock Source Clock Output

0|1|2|3 Mastera Pixel Processor (PP)

0 Master PP: Pixel Engine

1 Master PP: Memory Access Unit

2 Master PP: Memory Copy

3 Master Anti Aliasing Filter

4 Master Direct/Indirect Physical Access

5 Master Video Interface

5 Video Scaler (VSC_CLKV) Video Interface

6 Master SDRAM Controller

7 Master Cold Cathode Fluorescence Light

8 MCU Bus (ULB_CLK) Serial Peripheral Bus

9 Master User Logic Bus Interface and Com-
mand Controller

9 MCU Bus (ULB_CLK) User Logic Bus Interface

(tristate)

APLL

DIV y

DIV z

DIV x X
O

R

XZ_CU_PIXCK
[12]

Default Path

ClkConR

ClkPdR

[bits]

{ bits }

[23:22]

lock {12}
L
X

S
A
CK
FB

[21:16]

[29:24] MASTERCLK

tst

[10:0]

[14]

PIXELCLK

tst

PLL CLOCK

DIRECT

T
S

T
_
M

A
S

_
C

L
K

T
S

T
_
P

IX
_
C

L
K

[31:30]

{11} [15]

[13]

OSC_IN

DIS_PIXCLK

ULB_CLK

RCLK

Figure 3-1: Clock routing and configuration bits
Page 36

Clock Unit
All clocks except VSC_CLKV can be used as Master or Pixel clock source. VSC_CLKV is for video inter-
face dedicated use only.

There are no special requirements for the quartz crystal parameters. At the case of overtone oscillation ad-
ditional external inductance L’=5-10uH and capacitor C’=10pF are needed. Two capacitors C=22pF have
to be connected from the OSC pins to ground in any case. Figure 3-2 shows recommendet circuit.

Without a crystal oscillator connected (e.g. extrnal oscillator) the clock has to fed in the OSC_IN pin.

3.2 Clock Unit Programming Sequence

This section gives a recommendation for the sequence for GDC clock configuration. In general the Clock
Unit registers should be configured before all other GDC setup information.

• Apply stable clock and do a hardware reset.

• Write ClkConR for the required mode. Clock gates are disabled per reset default.

• Switch on PLL and optionally apply software reset (Set bits [11] and [15] in ClkPdR).

• Clear software reset bit (Optional, only if set before).

• Wait until APLL has stabilized and locked (lock-up time)1

Polling of lock bit is optional and not sufficient that PLL locking process has finished. This signal is
for Fujitsu test purpose only. APLL lock-up state is reached if Lock bit becomes stable ’1’. This is
guaranteed after specified PLL lock-up time of 500us.

• Set required clock enable bits to open the clock gates.

10 Master Graphic Processing Unit

10 Pixel Clocka Graphic Processing Unit

a.Master and Pixel clock could be derived from one of four possible clock inputs (OSC_IN,
DIS_PIXCLK, ULB_CLK, RCLK/MODE[3]) with or without use of the PLL.

1.The lock up time measured from PLL start (CLKPDR_RUN=’1’) to lock state

(CLKPDR_LCK=fixed ’1’).

Table 3-1: Mapping of clock sources, outputs and their enable bits

ClkPdR Control Bit Clock Source Clock Output

OSC_IN OSC_OUT

XQ

C C C’

L’

Figure 3-2: Crystal connection between pins OSC_IN and OSC_OUT
Clock Setup and Configuration Page 37

MB87J2120, MB87P2020-A Hardware Manual
An example sequence for this procedure is listed below:

3.3 Application Notes

The Clock Unit provides an internally synchronized reset signal to all GDC components. Therefore it’s nec-
essary to have a stable clock applied to the OSC_IN pin during RESETX is low and/or at least after release
of RESETX. Otherwise the internal circuitry is not initialized properly or clock unstability after reset release
can cause malfunction.

With the direct clock source it’s possible to use a external ULB_CLK from the MCU or RCLK as clock
source for almost all internal GDC components. The APLL is not able to handle jitter/variations in input
clock.

If the GDC should operate in single clock mode over ULB_CLK driven by the MCU, ULB_CLK and
OSC_IN have to be bridged. In any case a clock has to feed in OSC_IN pin, otherwise the reset state would
not be left.

If system or pixel clock divider are initialized with an even value tis results in an odd divider value (value
interpreted +1). In this situation the duty of the output clock is not even 1:1. Most important this is for low
values. In case of not even duty the high duration is smaller than the low duration. Following table lists clock
divider and duty relationship.

Table 3-2: Clock division and resulting duty

Setup Value Divider Duty

0 1 1/1

1 2 1/1

2 3 2/1

3 4 1/1

4 5 3/2

5 6 1/1

6 7 4/3

...

/* CU control information */

G0CLKPDR = 0x00008800; // SW reset and APLL enable

G0CLKPDR = 0x00000800; // release SW reset, clock gates are still closed

G0CLKCR = 0x010E8001; // MASTER=XTAL*15/2, PIXCLK=XTAL/2 not inverted output

G0CLKPDR = 0x00000EF1; // enable GPU, ULB, CCFL, SDC, VIC, DIPA, PE

Figure 3-3: Clock configuration procedure with reset
Page 38

B-2 User Logic Bus Controller (ULB)
Page 39

MB87J2120, MB87P2020-A Hardware Manual
Page 40

User Logic Bus
1 Functional description

1.1 ULB functions

The “User Logic Bus Interface” (ULB) provides an interface to host MCU (MB91360 series). It is respon-

sible for data exchange between MCU and the graphic display controllers (GDC) Lavender or Jasmine1.
The communication between MCU and the display controller is register based and all display controller reg-
isters are mapped in the MCU address space.

The task of ULB is to organise write- or read accesses to different display controller components, including
ULB itself, depending on a given address. For read accesses the ULB multiplexes data streams from other
components and has to control the amount of needed bus wait states using MCU’s ULB_RDY pin.

The ULB provides also a command- and data interface to so called ’execution devices’ (Pixel Processor
(PP) and Indirect Memory Access Unit (IPA)). These execution devices are responsible for drawing com-
mand execution or for the handling of SDRAM access commands. The data transfer to and from execution
devices is always FIFO buffered. In order to ensure a rapid data transfer between MCU and display control-
ler ULB contains one input and one output FIFO which are mapped to certain memory addresses within the
display controllers memory space. ULB controls the MCU port of these FIFOs (write for input FIFO and
read for output FIFO) while the ports to execution devices is controlled by the device itself.

The command interface has a two stage pipeline so command and register preparation is possible during
command execution of previous command. Most commands can have an infinite amount of processing data.
The FIFOs help to reduce the number of bus wait states.

Additionally to FIFO data exchange direct access to SDRAM and to initialisation registers is managed by
ULB. This direct SDRAM access maps the SDRAM physical into MCUs address space. Drawing functions
use a logical address mode for SDRAM access. Due to this direct (and also indirect via FIFOs) physical
access to SDRAM it can also be used to store user data and not only layer data (bitmaps, drawing results).
For direct SDRAM access (frame buffer or video RAM) the display controller internal SDRAM bus arbi-
tration influences the MCU command execution time directly via ULB bus wait states via ULB_RDY signal.
Therefore longer access times should be calculated for this kind of memory access. ULB is able to handle
memory or register access operations concurrently to normal command execution (FIFO based).

Beside normal data and command read and write operation ULB supports also DMA flow control for full
automatic (without CPU activity) data transfer from MCU to display controller or vice versa. Only one di-
rection at one time is supported because only one MCU-DMA channel is utilised. Also an interrupt control-
led data flow based on programmable FIFO flags is possible. In both cases the ULB bus is used for data
transfer.

ULB offers a set of some special registers controlling the display controller behaviour or show the state of
the controller with respect to MCU:

• Flag-Register

• Flag-Behaviour-Register

• Interrupt-Mask-Register

• Interrupt-Level-Register

• DMA-Control-Register

• Command Register

• SDRAM access settings

• Debug Registers

ULB also provides an interrupt controller that can be programmed very flexible. Every flag can cause an
interrupt (controllable by Interrupt-Mask-Register) and for Jasmine it is selectable whether the interrupt for
a certain flag is level or edge triggered. Furthermore for every flag the programmer can determine whether
the flag is allowed to be reset by hardware or not (static or dynamic flag behaviour).

1. The term ’display controller’ is used as generic name for Lavender and Jasmine and covers both devices.
Functional description Page 41

MB87J2120, MB87P2020-A Hardware Manual
The ULB internal DMA controller is able to use all DMA modes supported by MB91360 series. It operates
together with input or output FIFO and uses programmable limits. In demand mode the controller calculates
the amount of data to transfer by its own. In other modes the programmer has to ensure that enough space
is available in input FIFO so that no data loss can occur.

Because of different clock frequencies for ULB bus and display controller core clock an important ULB
function is the data synchronisation between these two clock domains. A asynchronous interface is offered
by ULB which allows independent clocks for ULB and core as long as ULB clock is equal or slower than
core clock.

In order to adjust the display controller’s operation mode so called ’mode pins’ (MODE[3:0]) are used:

• The display controller can also act as an 16 Bit device from MCU’s point of view. In this case ULB con-
verts write data from 16 to 32 Bit and read data from 32 back to 16 Bit in order to hide interface param-
eters to internal display controller components. The data mode can be set by MODE[2].

• Up to four display controllers can join one chip select signal. So it is necessary to set the controller
’number’ by MODE[1:0]. ULB takes care about correct address decoding depending on this ’number’.

• In order to allow flexible PCB layout some signals can be inverted and can be set to tristate. For Jasmine
the inversion of ULB_RDY is controlled by MODE[3]. For more details about signal settings see
chapter 1.3.4.

In short terms the main functions of ULB are:

• MCU (User Logic Bus) bus control inclusive wait state handling for read access via ULB_RDY pin

• Address decoding and control of other display controller components

• Data buffering and synchronisation between different clock domains

• Command decoding and execution control

• Flag handling

• Programmable interrupt handling

• Programmable DMA based input/output FIFO control

• 16/32 Bit conversion for writing and reading

1.2 ULB overview

Figure 1-1 shows the block diagram of ULB top level design.

Table 1-1 gives an overview on main functions of ULB top level modules. Important modules will be ex-
plained in more detail in the following chapters.

Table 1-1: Top level modules of ULB

Name Main functions

Input Sync • Synchronization for write signals (MCU -> display controller)

Interrupt Controller (IC) • Flag register management
• Management of different interrupt sources
• User definable interrupt source masking and trigger condition
• Interrupt signal generation (Jasmine: programmable length for

edge request)

Address Decoder (AD) • Handling of other display controllers using the same chip select
signal

• Address decoding and calculation for direct SDRAM access
• Address segmentation management
• Control of MCU data I/O as result of address decoding
• Activation of Command Control, Register Control Unit (CTRL)

and Direct Physical Memory Access Units (DPA) as result of
address decoding
Page 42

User Logic Bus
Command Controller (CC) • Command decoding
• Management of command execution
• Condition decoding for control command execution

I/O controller (IOC) • Read/write control for data part of user logic bus
• Access control and status signal generation for data FIFOs and

registers for MCU and display controller site
• Clock domain synchronization for read data bus (display con-

troller->MCU)
• Bus multiplexing for display controller read data busses

DMA Controller (DMAC) • DMA flow control for MCU site of input and output FIFO

Register File (RF) • Storing of user definable parameters for ULB

Table 1-1: Top level modules of ULB

Name Main functions

interface
CTRL data

interface
DPA data

MB91F361

Interrupt

GDC I/O−Ring

ULB

DMA Controller

Register File

Interrupt Controller

to DPAto CTRLDevice ControlCTRL

Command
Controller

IFIFO read OFIFO write

I/O Controller

IFIFO

M
C

U
 c

lo
ck

 d
om

ai
n

C
or

e
cl

oc
k

do
m

ai
n

OFIFO

Input Sync

Address Decoder

RDY DMAData In / OutCSX/RDX/WRX[3:0]Address

Figure 1-1: Block diagram for top level of ULB
Functional description Page 43

MB87J2120, MB87P2020-A Hardware Manual
1.3 Signal synchronisation between MCU and display con-
troller

1.3.1 Write synchronization for Lavender and Jasmine

The data flow inside the ULB is divided in write- and read-direction. These data directions are completely
independent. That’s why there are two synchronisation points for ULB bus signals; one for write direction
and one for read direction.

The first synchronisation point is located inside ’Input Sync’ and is responsible for all ULB signals coming
from MCU (ULB_CSX,ULB_WRX, ULB_RDX, ULB_A, D_in). Other incoming MCU signals for
DMA are used directly inside the DMA controller which is partly clocked by ULB clock.

Note: For a correct operation of Input Synchronization ULB clock has to be equal or
slower than display controller core clock. Note that all tolerances for clocks should
be taken into consideration.

In Jasmine a configurable sample behaviour for input signals has been introduced. In order to avoid inter-
ferences from external bus different sample modes can be set. It can be chosen between four different sam-
ple modes. Each mode combines one or more out of three sample points distributed over one bus cycle.
Figure 1-2 shows these sample points. Note that the sample points are only valid for control signals

(ULB_CSX,ULB_WRX, ULB_RDX); address and data bus are only sampled at point 2 (see figure 1-2).
The sampling is equal for read and write accesses.

The sample mode can be set in register IFCTRL_SMODE (see also table 2-1); table 1-2 shows all possible
settings and sample modes.

Table 1-2: Control signal sample modes for Jasmine

Mode IFCTRL_SMODE[1:0] Comment

3 point mode [default]
00

all three sample points have to have the
same value

2 of 3 point mode
01

two out of three sample points have to
have the same value (majority decision)

���������������
���������������
���������������
���������������

���������������
���������������
���������������

���������������
���������������
���������������

������������������
������������������
������������������

������������������
������������������
������������������

��
��
��

��
��
��

������������������
������������������
������������������
������������������

��
��
��
��

ULB_CS

ULB_CLK

ULB_A

ULB_D

ULB_WRX[n]

ULB_RDX

Sample point: 10 2

Figure 1-2: Bus cycle sample points for Jasmine
Page 44

User Logic Bus
Beside different sample modes Jasmine’s input synchronisation circuit contains priority logic to distinguish
between read or write access in the case that both control signals (ULB_RDX and ULB_WRX[n]) were de-
tected. Because the I/O controller (ULB read path) may detect a read access the ULB_RDX signal for read
access has the highest priority.

In Lavender a different input synchronisation circuit is implemented were always one sample point is used1.

1.3.2 Read synchronization

For Lavender and Jasmine the ULB_RDY signal is gated by ULB_CSX. This means that the ULB_RDY sig-
nal goes immediately high after ULB_CSX=’1’ has been detected. It can not be ensured that correct data
are transferred to MCU in this case.

A protection against wrong tristate bus control signal switching is implemented in ULB. The bus driver is
only valid if ULB_CSX=’0’ and ULB_RDX=’0’. In all other cases ULB data bus is not driven.

Additionally to the described safety mechanisms which are implemented in both devices (Lavender and Jas-
mine) Jasmine has a programmable timeout for ULB_RDY signal generation. Therefore a counter is imple-
mented which is loaded with the value set in register RDYTO_RDYTO[7:0] at the beginning of a bus read

cycle2. If the read value does not arrive within the counter runtime3 ULB_RDY signal is forced to ’1’ and
the MCU can finish the bus read cycle. Note that in this case data transferred to MCU are not valid. The
occurrence of a ULB_RDY timeout is reflected in the flag FLNOM_ERDY (ULB_RDY timeout error; see also
flag description in appendix) which has been implemented in Jasmine. Additionally to the error flag the ad-
dress where the timeout error occurred is stored in register RDYADDR_ADDR[20:0] in order to allow an
application running on MCU an error handling.

The ULB_RDY timeout counter can be disabled by turning RDYTO_RDTOEN off (set to ’0’).

In regular operation mode a ULB_RDY timeout can only occur if no memory bandwidth can be allocated by
the device handling the read request. Because the command execution is FIFO buffered (see also
chapter 1.1) and a read access from FIFO always returns a value within short time no timeout error can oc-
cur in normal command execution. Only a direct mapped memory read access (DPA read access; see also
chapter 1.4.3) in conjunction with very limited bandwidth may cause a ULB_RDY timeout error in normal
operation.

Beside this reason for timeout error in normal operation also disturbed bus transfers or bad signal integrity
may cause a timeout error.

1.3.3 DMA and interrupt signal synchronization

The DMA input and output signals (ULB_DREQ, ULB_DACK, ULB_DSTP) are used/generated in the
DMA Controller which is partly operating at ULB clock. Because these signals are generated in this part no
synchronisation is necessary. The signals influencing the DMA signal generation have to be synchronized
from Lavender/Jasmine core to ULB domain. For more details regarding DMA see chapter 1.7.

Another signal which needs to be transferred from Lavender/Jasmine core to ULB clock domain is the in-
terrupt request signal (ULB_INTRQ). In chapter 1.6 a detailed description of interrupt signal generation is
given. The synchronisation of the interrupt request signal is different between Lavender and Jasmine. Jas-

2 point mode
10

sample point 1 and 2 (see figure 1-2)
have to have the same value

1 point mode 11 sample point 1 determines result value

1. For Lavender sample point 1 is used to catch signals within ULB clock domain. Afterwards the caught sig-
nals will be sampled with core clock. As a result the real sample point depends on clock ration between ULB
and core clock.

2. A ULB bus read cycle is detected when ULB_CSX=0 and ULB_RDX=0.

3. The runtime ends when the counter reached value ’0’.

Table 1-2: Control signal sample modes for Jasmine

Mode IFCTRL_SMODE[1:0] Comment
Functional description Page 45

MB87J2120, MB87P2020-A Hardware Manual
mine supports level and edge triggered interrupt requests with programmable edge length while Lavender
is only supporting level triggered interrupt requests.

In level triggered interrupt mode the interrupt request is only reset if the flag which causes this interrupt is
also reset. Because of software flag reset the request signal is stable for a very long time and no internal
handshake mechanism is needed.

In difference to level triggered interrupt edge triggered interrupt reacts on a rising edge of a flag. This edge
causes a pulse of programmable length on interrupt request signal.

1.3.4 Output signal configuration

In order to allow flexible system integration both display controllers allow configuration for some output
signals to MCU. This includes an option to signal inversion and a tristate control in order to allow external
pull up resistors.
If the tristate control is enabled the according pin drives tristate (’Z’) instead of high level (’1’) while low
level (’0’) is driven in any case (emulated open drain).

Table 1-3 contains the settings for all configurable signals (ULB_DREQ, ULB_DSTP and ULB_INTRQ)

valid for both display controllers. In Jasmine additionally ULB_RDY can be controlled by special pins1.

Note that there are differences in controlling the signal behaviour between Lavender and Jasmine. While in
Lavender the signals ULB_DREQ, ULB_DSTP and ULB_INTRQ are controlled together with two register
Bits for tristate and inversion (DMAFLAG_TRI and DMAFLAG_INV) in Jasmine every signal has its own
control (see table 1-3).

1.4 Address decoding

1.4.1 Overview

The useable address space for display controller chip select signal (ULB_CSX) is 221 Byte (2 MByte) and
the available space is divided into one configuration register space where all configuration registers are lo-
cated and one SDRAM space were SDRAM windows can be established and accessed This space is con-
figurable. Figure 1-3 shows the address space with the default settings for SDRAM space of Lavender and
Jasmine.

Table 1-3: Control for feedback signals

Signal Setting Lavender Jasmine

ULB_DREQ tristate Register: DMAFLAG_TRI Register: IFCTRL_DRTRI (1: tristate)

invert Register: DMAFLAG_INV Register: IFCTRL_DRINV (1: invert)

ULB_DSTP tristate Register: DMAFLAG_TRI Register: IFCTRL_DSTRI (1: tristate)

invert Register: DMAFLAG_INV Register: IFCTRL_DSINV (1: invert)

ULB_INTRQ tristate Register: DMAFLAG_TRI Register: IFCTRL_INTTRI (1: tristate)

invert Register: DMAFLAG_INV Register: IFCTRL_INTINV (1: invert)

ULB_RDY tristate no control possible Pin: RDY_TRIEN (1: tristate)

invert no control possible Pin: MODE[3] (1: invert)

1. A register based control is not possible because read accesses would potentially not work in this case or the
MCU may hang with a wrong signal.
Page 46

User Logic Bus
Jasmine and Lavender support up to four devices for one chip select (ULB_CSX) signal. Also a mixed en-
vironment with different display controllers is possible. Register and SDRAM space are used by all con-
nected display controllers. Figure 1-4 shows a possible scenario for four display controllers which treats
only as an example. Many other configurations for SDRAM space are possible while register space is fixed
configured.

1.4.2 Register space

The size and location of configuration registers for every display controller is fixed. The size is set to
64 kByte for every display controller and the location is specified by Mode Pins (MODE[1:0]) as de-
scribed in Table 1-4.

Table 1-5 shows the register space for one display controller decoded by ULB address decoder. This decod-
er has a built in priority for the case of overlapping address areas. One display controller reserves the register
space for other controllers. Because the address decoder has a decoding priority it is not possible to overlay
the register space for other controllers with SDRAM windows.

Table 1-4: Address ranges for register space of different display controllers

Controller number MODE[1:0] Address range

0 00 00000h...0FFFFh

1 01 10000h...1FFFFh

2 10 20000h...2FFFFh

3 11 30000h...3FFFFh

SDRAM Space

0k

64k

256k

1M

2M

Configurable

0x00040000

0x00100000

0x000C0000

Register Space for GDC0
0x00010000

0x001FFFFF

not configured

Video Memory window

Register Space for GDC0

Jasmine default configuration

768k
not configured

Lavender default configuration

Video Memory

Register Space
Register Space for other GDC Register Space for other GDC

Figure 1-3: Address space for Lavender and Jasmine with default configuration
Functional description Page 47

MB87J2120, MB87P2020-A Hardware Manual
Within the upper part of register space (address range 0xFC00-0xFFFF) for one display controller a re-
served area is located. This area is needed for internal and/or external devices with the same ULB_CSX sig-
nal as the display controller which have their own address decoders. Internal devices using this area are
currently the Clock Unit (CU) and the Serial Peripheral Bus driver (SPB) (see also table 1-5).

Note that Lavender register space is compatible to Jasmine register space. Only new registers for new func-
tions were added or not needed registers were removed but the same function can be found on the same reg-
isters. There are only a few exceptions (see register list for more details).

Table 1-5: Register address space for GDC

Priority Address range ULB addressed
component

Target component/Register

1

0x0000

ULB

Command register

0x0004 Input FIFO

0x0008 Output FIFO

0x000C Flag register (normal access)a

0x0010 Flag register (reset access)a

0x0014 Flag register (set access)a

0x0018 Interrupt mask (normal access)a

0x001C Interrupt mask (reset access)a

0x0020 Interrupt mask (set access)a

Register space

SDRAM space

SDRAM
GDC 0

SDRAM
GDC 1

SDRAM
GDC 2

SDRAM
GDC 3

GDC 0: gdc_offset0

GDC 0: gdc_size0

GDC 3: gdc_offset1

GDC 3: gdc_size1

GDC 0: gdc_size1

GDC 0: gdc_offset1

GDC 1: gdc_offset0

GDC 1: gdc_size0

GDC 1: gdc_offset1

GDC 1: gdc_size1

64k

128k

192k

256k

2 21

GDC 0 (64k)

GDC 1 (64k)

GDC 2 (64k)

GDC 3 (64k)

��������
��������
��������

��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

������������

������
������
������
������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

������
������
������

������
������
������

��������
��������
��������
��������

��������
��������
��������
��������

������������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

������
������
������
������

������
������
������
������

CSX

MODE[1:0]

GDC 0: sdram_offset0

GDC 0: sdram_offset1

GDC 0: gdc_size1

GDC 0: gdc_size0

GDC 3: sdram_offset1

GDC 3: gdc_size1

GDC 1: sdram_offset1

GDC 1: gdc_size1

GDC 1: sdram_offset0

empty space

GDC 1: gdc_size0

Figure 1-4: Address space example for four graphic display controller (GDC) devices
Page 48

User Logic Bus
1.4.3 SDRAM space

For direct SDRAM access two independent windows can be set within ULB for one display controller. The
term ’window’ means that a part of the SDRAM memory can be blended into the MCU address space. Win-
dows can be set up by defining window parameters within ULB’s register space. Before an established win-
dow is useable the SDRAM space has to be enabled. The following parameters can be used to set up
SDRAM windows (see also figure 1-4):

2

0xFC00 - 0xFC07

Reserved area

CU

0xFC08 - 0xFCFF emptyc

0xFD00 - 0xFD0F SPB

0xFD10 - 0xFFFF emptyc

3

0x0024 - 0x009F

CTRL

ULB

0x0100 - 0x0217 SDC

0x1000 - 0x1243 GPU - LDR

0x1300 - 0x1383 GPU - MDR

0x1400 - 0x140F GPU - MTXb

Lavender: 0x2000 - 0x23FF
Jasmine: 0x2000 - 0x27FF

GPU - CLUT

0x2800 - 0x2BFF GPU - GAMMAb

0x3000 - 0x3263 GPU - DIR

0x3270 - 0x3273 GPU - SDC

0x4000 - 0x403B VIC

0x4100 - 0x4133 PP

0x4200 - 0x420B DIPA

0x4400 - 0x4407 CCFL

0x4500 - 0x450F AAF

4
other display controllers (see

table 1-4)
- emptyc

5 SDRAM window1 range DPA SDRAM

6 SDRAM window0 range DPA SDRAM

7
Empty area within SDRAM

space
- emptyc

a. Refer to section 1.6 for an explanation of register access types.

b. Jasmine only

c. A special ’empty’ signal is generated because the ULB is not allowed to drive the data bus for a read access
inside an empty area while the I/O Controller detects a valid read access.

Table 1-5: Register address space for GDC

Priority Address range ULB addressed
component

Target component/Register
Functional description Page 49

MB87J2120, MB87P2020-A Hardware Manual
• WNDOF0_OFF, WNDOF1_OFF to define an offset in MCU address space

• WNDSZ0_SIZE, WNDSZ1_SIZE to define SDRAM window size for MCU and SDRAM address space

• WNDSD0_OFF, WNDSD1_OFF to define SDRAM offset

All these parameters are explained in detail in table 2-1.

As displayed in figure 1-3 2 MByte (221 Byte) - 256 kByte (register space) = 1.75 MByte can be used for
both windows within MCU address space. This address space is equal in Lavender and Jasmine while the
available SDRAM memory differs according to table 1-6. For Jasmine it is possible to map the entire
SDRAM memory into ULB’s SDRAM space in order to have linear access to SDRAM. For Lavender only
parts of SDRAM can be mapped to MCU address space at one given time but a dynamic reconfiguration is
possible.

All to one chip select signal connected display controllers share the available SDRAM space (1.75 MByte).
There is no additional restriction about the size or order of SDRAM windows of different controllers.
Figure 1-4 gives just one example but many more configurations are possible.
Gaps between SDRAM windows for a particular display controller are handled by ULB as well as SDRAM
windows of other controllers. Both possibilities can not be distinguished by the address decoder and they
produce an empty space hit which means that no data are driven for read access and a write access is simply
ignored.

Within one display controller overlapping SDRAM windows are allowed; this is controlled by address de-
coder priority according to table 1-5. This is not true for SDRAM windows from different controllers. Write
access is possible; the value is written to all SDRAM windows mapped to this address. Read access is not
possible and can damage display controller or MCU because no ULB bus driving control is available be-
tween different display controllers.

Note: There is no control for overlapping windows of more than one display controller
within SDRAM space. Reading from such an area can damage display controller
or MCU.

With help of SDRAM windows the SDRAM memory can be written or read with physical SDRAM ad-
dresses via a display controller component called ’DPA’ (Direct Physical Memory Access). In difference
to this addressing mode all drawing functions use a logical address (pixel coordinates with (layer, x, y)).
The SDRAM controller (SDC) within the display controller maps the logical pixel coordinates to a physical

SDRAM address. This mapping is block based1 and differs between Lavender and Jasmine since it depends
on SDRAM architecture. A picture previously generated by Pixel Processor (PP) with help of drawing/bit-
map commands can not be read back in a linear manner because the logical to physical address mapping
has to be performed in order to get the right physical address for a given logical address (layer, x, y). Also
for writing graphics which should be displayed by the Graphic Processing Unit (GPU) of a display control-
ler the logical to physical mapping has to be taken into account. The easiest and most portable way (between
Lavender and Jasmine) to write or read to/from logical address space is to use PP commands. In this case
the mapping is done automatically and controller independent in hardware.

The physical SDRAM windows can be used for any kind of data as long they do not present a picture which
should be displayed by GPU. Within one SDRAM window a linear access to the data is possible.
Because the start address of each layer can be set in physical SDRAM addresses it is possible to divide the
SDRAM memory between layer and user data. Note that there is no layer overrun control implemented in
hardware within the display controller.

While the SDRAM memory windows are mapped into the MCU address space the access is basically or-
ganised as normal register access. But there are some important differences compared to normal register

Table 1-6: SDRAM memory for Lavender and Jasmine

Display Controller SDRAM type SDRAM size

Lavender external 8 MByte (64 MBit)

Jasmine internal 1 MByte (8 MBit)

1. See SDC specification for details.
Page 50

User Logic Bus
access. In difference to a register which can be exclusively accessed via its address in MCU address space
the SDRAM is a resource that has to be shared between different display controller components. For one

special SDRAM address many different ways to access it1 can be found. Therefore the SDRAM controller
(SDC) arbitrates the accesses with different priority.
For the direct SDRAM access does this mean that an undefined access time depending on current system
load occurs. For read accesses the ULB_RDY signal is used for synchronisation between MCU and display
controller while for write accesses a flag (RDPA) in flag register is used. The application has to poll this flag

(wait as long as flag is zero2) in order to synchronize write accesses to SDRAM window. As a side effect
no DMA access is possible for writing to SDRAM window. Since for reading the ULB_RDY signal is used
DMA access is possible.

While for Jasmine every kind of access (word (32 Bit), halfword (16 Bit) and byte (8 Bit)) is possible for
reading and writing to/from SDRAM windows for Lavender the read access is limited to word access
(32 Bit).

Table 1-7 sums up the access types and synchronization methods for both display controllers.

Because of the SDRAM access arbitration and write restrictions (flag polling) direct physical SDRAM ac-
cess is not the best method to access SDRAM memory.
For logical pixel access it is recommended to use command based and FIFO buffered drawing and access
functions (see chapter 1.5).
A better way to access the SDRAM memory in physical addressing mode is the indirect SDRAM memory
access via IPA component of display controller. This access type has some advantages compared to direct
access:

• linear access to SDRAM without window limits

• FIFO buffered transfer for effective SDRAM access

• address auto increment for reading and writing (burst SDRAM access)

• DMA is possible for reading and writing

1.4.4 Display controller bus access types (word, halfword, byte)

The MB91xxxx MCUs support three different bus access types for writing data from MCU to display con-
troller.

• Word access: write 32Bit

• Halfword access: write 16Bit

• Byte access: write 8Bit

For a more detailed description see MB91360 series hardware manual.

1. Beside the described direct physical access the Pixel Processor can access with logical addresses and also an
indirect physical access (command based) via IPA is possible.

2. Make sure this flag is set to dynamic behaviour.

Table 1-7: Access type and synchronisation for Lavender and Jasmine

Access Item Lavender Jasmine

Read Synchronisation ULB_RDY signal ULB_RDY signal

Access word word, halfword, byte

DMA possible possible

Write Synchronisation Flag: FLNOM_RDPA Flag: FLNOM_RDPA

Access word, halfword, byte word, halfword, byte

DMA - -
Functional description Page 51

MB87J2120, MB87P2020-A Hardware Manual
Table 1-8 lists the supported bus access types for different address areas and data modes for Lavender and

Jasmine. Note that for input and output FIFO only word access is allowed. Partial access can not be sup-
ported because every write/read access increments internal pointers.

Figure 1-5 shows the address to register mapping within display controller. Note that MB91xxxx MCUs use

Big Endian byte order which means that byte0 is the MSB byte of a 32Bit word. Every byte has its own
valid signal (ULB_WRX[3:0]) and a combination of valid signals determines the access type for a write
access.

For reading always the whole bus width depending on data mode (32- or 16Bit) is transferred from display
controller to MCU. The MCU selects the right part for current read instruction internally.

1.4.5 Display controller data modes (32/16 Bit interface)

MB91xxxx MCUs are able to communicate with devices with different bit sizes for data bus (32-, 16- and
8Bit). Normally Lavender and Jasmine were designed to act as 32Bit devices. In this mode optimal perform-
ance can be achieved and no internal data mapping is necessary.

For special purposes both display controller can act as 16Bit devices. With help of this mode parts of data
bus can be made available as general purpose I/O pins or it may be possible to connect the display controller

to a 16Bit MCU1.

Table 1-8: Bus access types for Lavender and Jasmine

Address area Lavender Jasmine

32Bit data mode
(MODE[2]=1)

16Bit data mode
(MODE[2]=0)

32Bit data mode
(MODE[2]=1)

16Bit data mode
(MODE[2]=0)

Input FIFO word word word word

Output FIFO word word word word

Register spacea

a. without input and output FIFO

word, halfword,
byte

word, halfword,
byte

word, halfword,
byte

word, halfword,
byte

SDRAM space word word word, halfword,
byte

word, halfword,
byte

WRX[2]WRX[1]WRX[0]Address

MCU address space Display controller register

WRX[3]0 31 0

Byte 0 Byte 1 Byte 2 Byte 3

7

Figure 1-5: MCU address to display controller register mapping
Page 52

User Logic Bus
Beside the chip select signal configuration the 16 Bit mode has to be selected for the address space of
GDC(s) within MCU (see MB91360 series hardware manual) and with MODE[2] pin (1: 32Bit mode;
0: 16Bit mode) at the display controller. All data transfer is done at MSB side of data bus (Pins:
ULB_D[31:16]). For write accesses does this mean that the bus signals ULB_WRX[2:3] are not used
and should be set to ’1’ in 16Bit mode. Table 1-9 gives an overview on used parts of data bus and used con-
trol signals.

In 16Bit mode display controller address space (register and SDRAM space) is accessible as in 32Bit mode.
All bus access types described in chapter 1.4.4 can be used transparently.

For word write accesses a MB91xxxx MCU splits the word access into two half word accesses with con-
secutive addresses (increment two). Since the display controller is able to handle half word and byte access-
es (see chapter 1.4.4) 16Bit mode can be supported.
ULB contains a 16Bit to 32Bit converter that is responsible for adapting the 16Bit bus access to internal
32Bit bus structure. For the special case of FIFO write access, where only word access is allowed not only
in 16Bit data mode, a special circuit was included which collects data for FIFO write access.

For read accesses ULB contains an additional converter which is responsible for converting the internal
32Bit bus structure to external 16Bit bus structure. For reading from output FIFO a special circuit is in
charge of reading only once from FIFO and store the value for second read.

1.5 Command decoding and execution

1.5.1 Command and data interface to MCU

The display controller command interface to MCU consists of the following main parts:

• Command register where command instruction and command coded parameters can be written and read

• Input- and output FIFO for data exchange between MCU and display controller

• Command dependent flags set by command controller

• Debug register (read only) in order to watch command controller behaviour

Writing to command register has to be synchronised with command execution within display controller. In
chapter 1.5.3 the structure and function of ULB’s command decoder will be explained in detail. From pro-
grammers’ point of view a flag (FLNOM_CWEN) shows when command controller is able to receive a new
command. An application should poll FLNOM_CWEN flag before writing a new command or if interrupt
controlled flow is implemented it should write commands only after FLNOM_CWEN causes an interrupt.

If the display controller ’Application Programming Interface (API)’ is used, flag polling is done automati-
cally before writing a new command. Figure 1-6 shows the draw line command within API as an example.

word GDC_CMD_DwLn(dword line_col) {

 while (!G0FLNOM_CWEN); /* Wait until Command Write Enable flag is set */

1. This MCU should have the same bus interface as MB91xxxx or it has to be adapted with help of glue logic.

Table 1-9: Signal connection for data modes

Signal Data mode

32 Bit data mode
(MODE[2]=1)

16 Bit data mode
(MODE[2]=0)

Data bus ULB_D[31:0] ULB_D[31:16]

Write control signals ULB_WRX[3:0] ULB_WRX[1:0]
set ULB_WRX[3:2] to ’1’
(pull up)

Read control signals ULB_RDX ULB_RDX
Functional description Page 53

MB87J2120, MB87P2020-A Hardware Manual
 G0LINECOL = line_col;

 G0CMD = GDC_CMD_DWLINE;

 return (0);

};

Figure 1-6: Draw line function as an example for command synchronisation

The function in figure 1-6 writes only the command and command dependent register settings (in this case
the line colour) to display controller, data transfer is done afterwards with help of FIFOs.

word GDC_FIFO_INP(dword *p_arr, word pcnt, byte dma_ena) {

 if (dma_ena == 0) {

 for (;pcnt>0;pcnt--) {

 while (G0FLNOM_IFF != 0) G0FLRST_IFF = 1;

 G0IFIFO = *p_arr++;

 }

 } else {

 while ((DMACA0 & 0x80000000) != 0);

 DMASA0 = (IO_LWORD)p_arr; // source address

 DMACA0 = DMACA0 | 0x80000000 | 0x0E100000 | pcnt; // DMA operation enable

 G0DMAFLAG_EN = 1;

 }

 return (0);

};

Figure 1-7: Function to put data to display controllers input FIFO

To write data to input FIFO another API function (GDC_FIFO_INP) shown in figure 1-7 is used.

GDC_FIFO_INP takes a pointer to an array with values1 which should be written to FIFO together with
data count. Note that data count is not limited to FIFO size, it can have any size. Before data can be written
to FIFO (register: G0IFIFO) the API function polls the full flag of input FIFO in order to avoid FIFO over-
flow. The general flow for command execution and programming is discussed in chapter 1.5.2.
Optional the transfer can be controlled by DMA (parameter dma_ena). See chapter 1.7 for more details
about DMA and its handling within an application.

Both display controllers (Lavender and Jasmine) contains one input and one output FIFO. The sizes of these
FIFOs are different in display controllers and listed in table 1-10.

Every FIFO has a set of flags which allow a flow control by an application. A detailed description of FIFO
flags can be found in flag description located in appendix. Beside full and empty flag also two programma-
ble limits (one lower and one upper limit) is implemented in both display controllers. These limits can be
used to perform an action within an application based on a certain FIFO load. This is often more efficient
than polling the full or empty flag for every single data word. Note that every flag can cause an interrupt
(for details see chapter 1.6) so that FIFO flags can be used for interrupt based flow control.
A general rule for input FIFO should be to check whether the free space in FIFO is large enough for the
amount of data words which have to be written.
Before reading from output FIFO the application should check whether enough data are available in output
FIFO. This can be done by polling the FIFO flags or by generating an interrupt.

As a replacement of application based flow control (polling or interrupt) DMA can be used to write data to
input FIFO or read data from output FIFO. For DMA the hardware takes care about FIFO load but an ap-

1. ’dword’ means 32 Bit unsigned.

Table 1-10: FIFO sizes for Lavender and Jasmine

FIFO Size for Lavender Size for Jasmine

Input FIFO 128 words 64 words

Output FIFO 128 words 64 words
Page 54

User Logic Bus
plication has to prepare the data first and can not generate them ’on the fly’. The ULB DMA controller is
described in detail in chapter 1.7.

Command dependent flags and debug registers are listed and described in chapter 1.5.5.

1.5.2 Command execution and programming

Figure 1-8 shows a flow chart of display controller command execution and a C-example of a display con-
troller command (GetPixel). For this example the C-API for Lavender and Jasmine is used. It is described
in a separate manual.

Before a new command can be written to command register the flag FLNOM_CWEN should be checked.
Therefore the flag register can simply be polled or an interrupt can be generated as result from the rising
edge of this flag. See chapter 1.6 for more details about flag and interrupt handling.

Afterwards command buffered registers can be written as well as the new command code itself. Note that
at this time the previous command may be still running (see also chapter 1.5.3 for a detailed discussion) and
also the previously buffered register contents is used.

Command buffered registers contain settings for a certain command (e.g. line colour for the DwLine com-
mand) which have to be synchronized to command change. The time of command change is determined by
hardware so that it is necessary to store values for next command in a separate register (e.g. new line colour
for next DwLine command right after the first one).
A list of command buffered registers can be found in the command description located in appendix. Also a
detailed register description is placed there.

The next step within command execution is to send data to input FIFO. The application has to take care that
no FIFO overrun occurs. Therefore it should watch the FIFO flags either by polling or via interrupt (see also
chapter 1.5.1). An application can compute input data with its own speed, the display controller waits for
new data if input FIFO runs empty.

FLNOM_IF*

Write Data to
Input FIFO

FLNOM_CWEN

Write Command 1 *)
(Read commands only)

FLNOM_CWEN

FLNOM_OF*

Read data from
Output FIFO

(Read commands only)

dependent registers

*) This command flushes input FIFO.
 Usually NoOp can be used .

Set command

Write Command 0

// --

// Write command to display controller and

// set command registers for GetPixel

// (no registers required)

// --

GDC_CMD_GtPx();

// --

// write data to input FIFO

// --

for (jj=0;jj<pkg_size;jj++) {

 GDC_FIFO_INP((dword*)BuildIfData(x,y,layer),1,0);

}

// --

// send NoOp command to force FIFO flush

// --

GDC_CMD_NOP();

// --

// wait for data in OF

// --

G0OFUL_UL = pkg_size;

while (G0FLNOM_OFH==0);

// read data from output FIFO

for (jj=0;jj<pkg_size;jj++) {

 data[amount++] = G0OFIFO;

}

Figure 1-8: Command flow for display controller commands with an example for GetPixel
Functional description Page 55

MB87J2120, MB87P2020-A Hardware Manual
Note that some commands use the input FIFO and internal buffers for collecting data before processing
them. Therefore an application can not expect that all data are processed immediately. This can lead to an
incomplete drawing of figures or to an incomplete memory transfer depending on running command. The
input FIFO and all internal buffers will be forced to flush when the next command is sent to display con-
troller.
The amount of collected data depends on executed command and can be programmed in separate registers.
These registers are REQCNT for all Pixel Processor commands and DIPAIF for physical memory access
commands (PutPA and GetPA).

Write commands can be executed with any amount of data in this way. The next command can be written
to command register after all data have been sent to input FIFO (see figure 1-8). This causes the termination
of previous command inclusive input FIFO and internal buffer flushing and the start of the new command
itself. If only a buffer flushing should be performed and no more commands have to be executed a NoOp
command can be used for this purpose.

For read commands (GetPixel, XChPixel)1 the scenario is a bit more complex. Due to the buffer usage
of input FIFO and internal buffers the display controller does not process all data. As a result not all expect-
ed read data can be found in output FIFO. A read loop over the expected amount of data would hang because
not all data are available in FIFO.
A possibility to force the display controller to fill the output FIFO with the expected amount of data is to
send a new command to command register. This can be the next command that has to be executed (including
command buffered registers as described above) or in order to keep the code simple and readable a NoOp
command (see also figure 1-8).
Another possibility is to set the register REQCNTwhich controls the buffered data amount to ’0’. This forces
a single transfer for every written data word. Note that this setting decreases performance compared to larg-
er values of REQCNT because no burst accesses to video memory are possible.

For data amounts larger than output FIFO size a division of data stream into packages is necessary. For each
of these packages the command flow according to figure 1-8 should be applied.

If an application wants to transfer a complete package at once without checking FIFO load for every data
word for instance via DMA or within an interrupt controlled application it is possible that not all data appear
in output FIFO and the initialized limit is not reached. Even if the next command was sent after GetPixel
or XChPixel which is normally suitable to flush input FIFO data flow blocking is not escaped.
Note that this behaviour does not occur if output FIFO is read with flag polling for every data word be-
cause the amount of words in output FIFO falls below the limit FIFOSIZE-REQCNT-1 at a certain time.
GetPA is not affected because it uses other registers than REQCNT for block size calculation as already
mentioned.

A possibility to utilize the full output FIFO size is to ensure that always REQCNT+1 words can be placed
in output FIFO. This limits the maximal package size (number of words to transfer for one output FIFO fill)
for a given REQCNT. The maximal package size can be calculated according to (1).

(1)

The function ’trunc’ in (1) means that only the natural part of this fraction should be taken for calculation.
The parameter ’FIFOSIZE’ is the size of output FIFO according to table 1-10. Note that ’pkg_size’ is
the maximal package size, sizes smaller than the calculated size can be used.

Figure 1-9 shows an example how to read back large data amounts from display controller. The shown func-
tion reads back a complete bitmap defined by a pointer to the structure ’S_BM’ (’bm’).

The example for automatic calculation of pkg_size is given to show whole FIFO and command usage mech-
anism and to point out differences between Jasmine and Lavender implementations.

In order to calculate required package size GetBM reads back the register REQCNT2, determines the correct
output FIFO size with help of chip ID and calculates the required package size according to (1).
For every data package the command execution flow described above is used. It is nested into a double loop

1. GetPA is also a read command but it is a so called ’finite’ command which gets the number of data to trans-
fer within a special register. This command is not concerned by this discussion.

2. G0REQCNT addresses the REQCNT register for GDC with number ’0’ (see chapter 1.4).

pkg_size trunc FIFOSIZE
REQCNT 1+
---------------------------------() REQCNT 1+()×≤
Page 56

User Logic Bus
for every bitmap dimension. The reading of data from output FIFO is only done if the calculated package
size (pkg_size) has been reached or if the bitmap has been completely finished (last package). As flush
command for input FIFO after writing a whole package the next GetPixel command is sent to display
controller.

// Struct for bitmap data

struct S_BM {

 byte layer; // layer to operate on

 word x,y,dx,dy; // coordinates: offsets x,y; length dx,dy

 dword *data; // bitmap data from x,y to (x+dx-1,y+dy-1)

 // amount: dx*dy

};

/* Read back function with optimal package sizes */

dword GetBM(struct S_BM *bm) {

 dword amount;

 word x, y;

 byte pkg_cnt, pkg_size, reqcnt, of_size;

 // calculate optimal package size for given request count

 reqcnt = G0REQCNT + 1; // minimum data amount for block transfer

 of_size = G0CLKPDR_ID? 64: 128; // FIFO size for Jasmine : Lavender

 pkg_size = (of_size / reqcnt) * reqcnt;

 // initialize data counters

 amount = 0; // bitmap pixels accumulative

 pkg_cnt = 0; // intra package count

 GDC_CMD_GtPx(); // GDC Mode: Get Pixel

 while (!G0FLNOM_IFE); /* IFIFO should be empty that packet fits into */

 // bitmap region, picture processing loop

 for (y = 0; y < bm->dy; y++) {

 for (x = 0; x < bm->dx; x++) {

 // write address to input FIFO (relative to BM start point)

 G0IFIFO = pix_address(bm->layer, x + bm->x, y + bm->y);

 pkg_cnt++;

 // get data if pkg_size completed (or even smaller last package)

 if (pkg_cnt == pkg_size || (y == bm->dy - 1 && x == bm->dx - 1)) {

 GDC_CMD_GtPx(); // flush by sending new command

 G0OFUL_UL = pkg_cnt; // initialize block size FIFO limit

 while (G0FLNOM_OFH == 0); // wait for all data avoids OF empty polling

 while (pkg_cnt) { // receive data from OFIFO

 bm->data[amount++] = G0OFIFO;) // Set pixel in bitmap array

 pkg_cnt--;

 } // while pkg_cnt

 } // if pkg_cnt == pkg_size

 } // x-loop

 } // y-loop

 return amount; // return number of data words in array

}

Figure 1-9: C-example for reading large data amounts from display controller

Note that for writing data to input FIFO in example from figure 1-9 no flag polling is necessary because it
is known that the amount of data is not larger than FIFO size (output FIFO and input FIFO have the same
size) and the input FIFO is empty at package start. Normally flag polling is necessary before writing data
to input FIFO. The API function ’GDC_FIFO_INP’ which was already described in chapter 1.5.1 automat-
ically takes care of this issue.

In the example in figure 1-9 the package size is calculated dynamically in order to experiment with different
values for REQCNT. Normally it is possible to set up REQCNT according to application needs and calculate
the maximal package size offline. If an application is not dependent on reading data from output FIFO at
Functional description Page 57

MB87J2120, MB87P2020-A Hardware Manual
once (e.g. per DMA or interrupt controlled) it may be easier to read data from FIFO as soon as they appear.
Figure 1-10 shows a code example where this is demonstrated.

// data array

dword data[SIZE];

// loop over package size

for (k=0; k < SIZE;k++){

 // wait as long as OFIFO is empty

 // make sure G0FLNOM_OFE is to dynamic!!!

 while (G0FLNOM_OFE);

 // read data into array

 data[k] = G0OFIFO;

}

Figure 1-10: C-example for reading data continuously

1.5.3 Structure of command controller

The ULB contains a command controller which is responsible for controlling so called ’execution devices
(ED)’ within display controller. These EDs are responsible for command execution and data processing.
In current implementation of Lavender and Jasmine four execution devices are handled by ULB command

controller. An overview on execution devices and their functions is given in table 1-11. See specifications
of these devices for a detailed description.

Most of display controller commands are so called ’infinite commands’ which means that these commands
have an unlimited number of processing data. The stop condition for infinite commands is writing a new
command. Therefore a second register is needed which contains the currently executed command. This reg-
ister is controlled by hardware and not writeable by MCU. Jasmine has the possibility to watch currently
executed command with a read only debug register (CMDDEB; see chapter 1.5.5 for details).

Between the two command registers the Command Decoder is located. The command write time from com-
mand to shadow command register is determined by hardware because it depends on the execution state of
previous command. The structure of Command execution unit within ULB is shown in figure 1-11.

In order to avoid command pipeline overflow and to implement a command flow control between display
controller and MCU a flag ’command write enable’ (FLNOM_CWEN) is implemented. This flag signals that
a new command can be written into command register (FLNOM_CWEN=1). By writing the new command
the old command is still executed and the pipeline is filled with two commands which can be watched from

MCU by ’CMD_WR_EN=0’1.

Table 1-11: Execution devices within Lavender and Jasmine

Execution device Function

Pixel Processor
(PP)

Pixel Engine (PE) • Drawing of graphical primitives
• Drawing and RLE decompression of bitmaps

Memory Access
Unit (MAU)

• Writing and reading of pixel-addressed data

Memory Copy
(MCP)

• Copying of pixel-addressed blocks within SDRAM
memory

Physical memory
access unit (DIPA)

IPA • Writing and reading of word-addressed data via
input- and output FIFO

1. This is only true when this flag is set to dynamic behaviour which is the reset value. See section 1.6 for a
detailed explanation.
Page 58

User Logic Bus
Additionally the write event of a new command triggers a mechanism that is responsible for dividing data
between different commands. This allows to write data for next command into input FIFO while the current
command is still running and the selected execution device reads data from FIFO.

Note: For the programmer it is important not to write data for currently executed com-
mand after writing a new command because these data would be interpreted as
data for new command.

After the currently running command has finished and all data in input FIFO have been processed the ULB
command controller writes next command into shadow register and sets ’CMD_WR_EN=1’.

Lavender differs between read and write commands. For commands reading data from display controller
via output FIFO for Lavender an additional condition has to be met before execution of a new command is
started.

Note: For a Lavender read command output FIFO has to be empty before a new com-
mand is started. In Jasmine this additional condition need not be respected and the
output FIFO can collect data from different commands.

Two different error cases regarding the ULB command controller can be observed by MCU via special error
flags (FLNOM_ECODE, FLNOM_EDATA). A detailed description of flags regarding the command execution
can be found in chapter 1.5.5.

1.5.4 Display controller commands

Display controller commands for Lavender and Jasmine are divided per execution type into infinite, finite
and special commands. An additional subdivision can be made into write and read commands independent
from execution type (finite or infinite). For a detailed command list see appendix.

Infinite command execution is processed as described in section 1.5.3. The stop condition for infinite com-
mands is the writing of next command. Infinite commands are:

• PutPA, DwLine, DwRect, PutPixel, PutPxWd, PutPxFC, GetPixel, XChPixel, MemCP
and DwPoly

Instruction

Command ready

Command stop

Command start

Command reset

for execution devices
FIFO read data

Code

FIFO space

FIFO space
for execution devices

FIFO read
from execution devices

FIFO empty
for execution devices

FIFO read

FIFO empty

Parameter
Command

MCU write_validMCU read commandCMDDEB

W
a

it
in

g
 C

o
m

m
a

n
d

E
x
e

c
u

te
d

 C
o

m
m

a
n

d

shadow_valid

FIFO write dataMCU write command FIFO write_valid

Controller
Command

Command Shadow Register

Command decoder

Command Register (CMD)

Input FIFO (IFIFO)

Figure 1-11: Command execution within ULB
Functional description Page 59

MB87J2120, MB87P2020-A Hardware Manual
In difference to infinite commands for finite commands the amount of data to be processed is fixed. It is
defined by various register settings inside the execution devices or command coded parameters in case of
GetPA (CMD_PAR).

Finite commands are:

• PutBM, PutCP, PutTxtBM, PutTxtCP, GetPA

Special commands are control commands influencing the command execution itself or execution devices
but they do not process data. There are two special commands:

• Software reset (SwReset) and No Operation (NoOp)

The NoOp command is included in the normal command execution pipeline as described in section 1.5.3
with the exception that no execution device is activated and no data are read from input FIFO or written to
output FIFO. This command can be used to force the previous command to end data processing. Note that
all data send during NoOp command is active are kept for next command.

The SwReset command treats as a synchronous reset for command execution. This command is not in-
cluded in the normal command pipeline and is executed immediately. The Command Controller inside ULB
and also all execution devices (complete PP, AAF and IPA inside DIPA) go in its initial state, the command
pipeline will be emptied and the FIFOs will be reset so that all data will be lost.

Note: During SwReset input- and output FIFO will be reset so that data loss will occur.

Not affected by software reset are display controller parts not responsible for command execution (SDC,
VIC, GPU, DPA inside DIPA, CU, CCFL and parts of ULB). These devices continue running and process-

ing data. To reset these devices a hardware reset is necessary1.

Due to a not interruptible SDRAM access software reset is not completed in one clock and needs execution
time depending on running SDRAM access for PP or IPA. Therefore the command flow control has also to
be used by an application after software reset.

Note: Also after SwReset the flag FLNOM_CWEN has to be polled in order to ensure a
save reset operation and execution of following commands.

1.5.5 Registers and flags regarding command execution

In order to allow an application controlling and watching the command execution ULB contains some flags
(within flag register) to provide the following functions:

• Flag: FLNOM_CWEN
Watching the command execution state as already described in section 1.5.3

• Flags: FLNOM_RIPA, FLNOM_RMCP, FLNOM_RMAU, FLNOM_RPE, FLNOM_BIPA, FLNOM_BMCP,
FLNOM_BMAU, FLNOM_BPE
Watching the state (busy or ready) of a specific execution device. Because all flags are high active both
variants are offered by display controller to capture the needed event (busy or ready).

• Flag: FLNOM_ECODE
A wrong command code was sent to display controller. The wrong code is treated internally as a NoOP
command which means that the command controller simply waits for a new command and no data
processing is performed. All data sent to input FIFO are kept for next command as an exception for
NoOp command behaviour.

• Flag: FLNOM_EDATA
This error flag is set when an execution device tries to read data from an empty input FIFO. This may
indicate a malfunction of execution device but the interpretation of this flag heavily depends on execu-
tion device implementation.

All flags are handled as described in section 1.6 and all are able to cause an interrupt if required. A detailed
flag description of all display controller flags can be found in flag description located in appendix.

1. A hardware reset can also be triggered by software by set register CLKPDR_MRST to ’1’.
Page 60

User Logic Bus
Additionally to flags inside flag register debug registers are implemented in Lavender and Jasmine in order
to watch command controller status. Table 1-12 lists these debug registers. Note that some registers are only
implemented in Jasmine.

1.6 Flag and interrupt handling

1.6.1 Flag and interrupt registers

The Interrupt Controller inside ULB contains one 32 Bit Flagregister (FLNOM; address 0x000C) and one
Interrupt-Mask-Register (INTNOM; address 0x0018) which allows a very flexible flag handling and inter-
rupt generation control.

In order to avoid data inconsistencies during bit masking within flag- or interrupt-mask-register the mask
process is implemented in hardware for these two registers. This helps to avoid flag changes by hardware
between a read and a write access (read->mask->write back).

To distinguish between set-, reset- and direct write access different addresses are used:

• Address (FLNOM, INTNOM): normal write operation

• Address + 4 (FLRST, INTRST): reset operation (1: reset flag on specified position, 0: don’t touch)

• Address + 8 (FLSET, INTSET): set operation (1: set flag on specified position; 0: don’t touch)

All of these three addresses write physically to one register with three different methods. For reading all
addresses return the value of the assigned register (FLNOM or INTNOM).
For writing all bus access types as described in chapter 1.4.4 are possible for each of these addresses.

1.6.2 Interrupt controller configuration

Figure 1-12 shows the basic structure of interrupt generation circuit for one flag.

The Flagregister itself is set and reset able by hard- or software. A set event by hard- or software sets the
flag to ’1’ and a reset event sets the flag to ’0’. Software flag access has a higher priority than hardware
events but hardware events may be present some clock cycles around software access which is only one
clock active after synchronisation.

Note: Despite the higher priority of software access the hardware event may overwrite
the software settings after MCU write access if the set- or reset condition for the
desired flag is still true.

Table 1-12: ULB debug registers

Register Bits Name Description Device

Name Address

ULBDEB

0x0098

7/6a:0

a. Lavender/Jasmine value due to different FIFO sizes

IF Current input FIFO load (command
independent)

all

15/14a:8 OF Current output FIFO load all

23/22a:16
IFLC Command dependent input FIFO

load
all

CMDDEB

0x009C

7:0
CMD Currently executed command (see

chapter 1.5.3)
Jasmine

31:8
PAR Command coded parameter for cur-

rent command (GetPA only)
Jasmine
Functional description Page 61

MB87J2120, MB87P2020-A Hardware Manual
A flag set by hardware is always possible; the hardware reset can be switched off in order to avoid dynamic
flag changing. This flag behaviour is referred to as ’static’ flag behaviour. A forbidden hardware reset is
important for a handshake implementation between display controller and MCU for instance in connection
with interrupts.
If flag set and reset is allowed the flag behaviour is called ’dynamic’ behaviour. In this case the desired flag
simply follows the input signal. Note that flag changes may occur with core or display clock which may be

higher than ULB bus clock1. Therefore it is not possible to trace some hardware events because you can not
achieve a suitable sample rate. If the toggle rate for a real hardware flag is slow enough you can of course
set the flag behaviour to dynamic.
Many flags represent a state which can be manipulated by software so that dynamic behaviour makes sense
for these flags because they can be indirectly influenced by software. For instance the full flag for input
FIFO can only change its value after writing data to input FIFO.
The flag behaviour can be set with register FLAGRES. Flag hardware reset can be turned on (1: dynamic
flag behaviour) or off (0: static flag behaviour) for each flag separately.

1.6.3 Interrupt generation

The first operation for interrupt generation is the masking of Flagregister by Interrupt-Mask-Register. With
this mechanism an application can determine which flags can cause an interrupt by simply set (’1’) at the
same bitposition as the flag in Interrupt-Mask-Register. Every flag can be source for an interrupt because
an OR combination of flags is implemented in Interrupt Controller.

After the Flagregister a level detection circuit is implemented (see figure 1-12) which detects the rising edge
of a flag. With the INTLVL register the programmer can choose for every flag whether to take the flag itself
(level interrupt) or the edge detection signal with one core clock length (edge interrupt).

In level triggered interrupt mode an interrupt handshake should normally be used between MCU and Lav-
ender/Jasmine. This means that the flag responsible for interrupt will be reset inside interrupt service routine
(ISR). The ISR is only called when MCU detects an interrupt request. As a result the interrupt request is
only taken back from Lavender/Jasmine after flag reset. So it is ensured that the interrupt signal is stable for
many ULB clocks in level triggered mode. Be careful with dynamic flags in this context.

In edge triggered interrupt mode no handshake between MCU and display controller is necessary. The dis-
play controller signals the MCU with a pulse on interrupt request signal (pin ULB_INTRQ) that a certain
event occurred within display controller. The MCU can call its ISR and does not need to reset the flag which
caused the interrupt if the flag behaviour is set to dynamic. If the flag behaviour is set to static and a reset
access from MCU is missing no more interrupts can be generated because no more rising edges for the in-
teresting flag occur.

1. The real sample rate is again lower since it is the time between two bus read cycles.

INTREQ INTC

(Jasmine only)
generation

(FLNOM)

Interrupt edge

...

..

Interrupt
mask (INTNOM)

Flagregister

..

FLAGRES

S

R
flag_reset(HW)

flag_set(HW)

MCU

D

MCU

MCU Address

1

0

1

0

INTLVL

flag0

flag31
Interrupt.

Figure 1-12: Interrupt generation within interrupt controller for one flag
Page 62

User Logic Bus
Jasmine contains an edge generation circuit which is responsible for a prolongation of an impulse in case
of an edge interrupt. The impulse length can be set in INTREQ_INTC within a range from 0 to 63 ULB
clocks. For every edge impulse at the input of the edge generation circuit a pulse with the programmed
length will be generated at output. If a level interrupt occurs the output signal follows the input signal syn-
chronized to ULB clock domain.

Lavender does not contain an edge generation circuit. Therefore no edge interrupt is possible.
For Lavender the default value for INTLVL register is edge trigger for interrupt for all flags. Make sure to
set the register INTLVL to 0x00000000 during Lavender initialisation.

For MCU interrupt programming ’H’ level should be used for display controller interrupt.

1.6.4 Interrupt configuration example

In figure 1-13 an example configuration for display controller and MCU is given. In this example an inter-
rupt should be activated when the input FIFO load is equal or lower than ’1’ (Register: G0IFUL). To acti-
vate the interrupt generation the Bit 3 of Interrupt-Mask-Register is set to ’1’ via the set address for this
register. The interrupt trigger for display controller is set to level.

For MCU first all interrupts are turned off, global interrupt level and level for GDC-interrupt is set, the
MCU interrupt trigger is also set to level to ensure a save detection. At the end the port for external interrupts
is enabled, pending interrupt requests will be deleted and interrupt execution is turned on again in order to
enable GDC interrupt execution. In MB91xxxx hardware manual the interrupt initialisation is described in
more detail.

;; ---------------------------------

;; Init GDC

writereg G0FLAGRES, 0x3f401fff; set FIFO flags to dynamic

writereg G0IFUL, 0x00000001; set input FIFO limits for interrupt

writereg G0INTLVL, 0x0 ; level triggered

writereg G0INTSET, 0x8 ; IF <= IF-low(=1)

;; ---------------------------------

;; Init MCU

andccr #0xef ; disable all interrupts

;; set interrupt level for ext. INT0

ldi #0x14,r0; set interrupt level to 20

ldi #ICR00, r1; load address for ext. INT0

stb r0, @r1

;; set global interrupt level to 30

stilm #0x1e

;; initialize external interrupt

ldi #0x1, r0; enable only INT0

ldi #ENIR, r1; load address for int. enable register

stb r0, @r1

;; set interrupt request level

ldi #0b01, r0; set ’H’ level for INT0

ldi #ELVR, r1; load address for external level register

sth r0, @r1

;; enable interrupt ports

ldi #0b00000001, r0; enable INT0

ldi #PFRK, r1; port function register for interrupt 0

stb r0, @r1

;; clear all interrupt requests

ldi #0, r0

ldi #EIRR, r1

stb r0, @r1

nop

nop

nop

;; enable interrupts

orccr #0x10; set I-bit in CCR register
Functional description Page 63

MB87J2120, MB87P2020-A Hardware Manual
;; ---------------------------------

Figure 1-13: Interrupt display controller and MCU initialisation example

1.6.5 Display controller flags

All display controller flags are located in the Flagregister (FLNOM) inside ULB Interrupt Controller and
handled as described in section 1.6.1.

All flags are explained in appendix. Note that some flags are only available for Jasmine.

1.7 DMA handling

1.7.1 DMA interface

In order to improve data transfer speed and to automate FIFO load controlling during command execution
Lavender and Jasmine contain a DMA controller which operates together with DMA-Controller (DMAC)
integrated in MB91xxxx series MCUs. It is located inside ULB’s I/O-Controller and handles the display
controller DMA interface (GDC-DMAC).

This interface consists of additional control signals; data transfer is handled by I/O Controller as for normal
MCU accesses. The DMA connection between display controller and MCU is shown in figure 1-14.
The GDC-DMAC requests a DMA transfer by setting ULB_DREQ to ’1’; the MCU acknowledges this re-
quest by set ULB_DACK to ’0’ during a valid bus cycle. ULB_DACK-pulses for other devices connected to
MCU are ignored by GDC-DMAC because the ULB_DACK signal is gated with ULB_CSX for display con-
troller.

In order to stop the MCU-DMAC externally by display controller the DMA stop signal (ULB_DSTP) exist.
This signal creates an error condition inside MCU-DMAC that can also cause an interrupt (see MB91xxxx
manual for more details).
A better solution than using ULB_DSTP signal for disabling MCU-DMAC is to disable DMA in MCU first
by writing DMACAx_PAUS=0 and DMACAx_DENB=0 and turn off GDC-DMAC afterwards.The DSTP
pin at MCU is not needed in this case and can be used as general purpose I/O. Note that the ULB_DSTP pin
at display controller may not be supported in future display controller releases.

1.7.2 DMA modes

The MCU DMA-Controller can deliver/get data in two different ways:

1. ULB_DREQ Level triggered (Demand mode)

2. ULB_DREQ Edge triggered (Block-, Step- and Burstmode)

For a detailed description of supported DMA modes see MB91360 series hardware manual.

Lavender/
Jasmine

DMA
Interface

ULB

MCU

ULB_DACK

ULB_DSTP

ULB_DREQ

Figure 1-14: DMA connection between display controller and MB91xxxx
Page 64

User Logic Bus
1.7.2.1 Level triggered DMA (demand mode)

In case 1. the length of the DREQ signal defines the amount of data to be transferred.

From MCU point of view an external device has to control the length of DREQ impulses according to inter-
nal buffer sizes. It is responsible for the division of data stream while the MCU is only controlling the total
amount of data to be transferred. In the special case of Lavender/Jasmine does this mean that the GDC-
DMAC counts the amount of free words for input FIFO (write DMA) or the number of words in output
FIFO (read DMA). Table 1-14 gives an overview on transfer sizes in different modes for display controller.

Before starting a demand transfer the GDC-DMAC tests for DMA start condition1, detects the number of
words to be transferred, loads a counter with this value and counts this counter to zero. During counting
ULB_DREQ is set to active. This procedure is repeated until DMA within display controller is disabled.

The GDC-DMAC does not know the total amount of words to be transferred. It only tries to fill (write
DMA) or to flush (read DMA) its FIFOs. At the end of a complete DMA transfer ULB_DREQ could still be
active because from display controller’s point of view DMA is enabled and input FIFO needs data or output
FIFO has to deliver data. After disabling DMA for display controller the ULB_DREQ signal goes inactive.

Figure 1-15 shows the start of a write DMA demand transfer. Display controller requests one input FIFO

fill cycle2. During this time a display controller command is active and reads data from input FIFO concur-
rently. After a short break the second fill cycle is requested.

1.7.2.2 Edge triggered DMA (block-,step-, burstmode)

In case 2. (edge triggered DMA transfer) only the rising edge of ULB_DREQ signal is important. The
amount of data to be transferred is set within MCU (see also table 1-14).

A MCU peripheral device has to ensure that the ULB_DREQ impulse is long enough to be recognized by
MCU. In case of GDC the ULB_DREQ signal goes inactive after the MCU has acknowledged the DMA re-

quest3. Depending on MCU mode (block-, step- or burstmode) a MCU defined amount of data words is
transferred to or from display controller FIFOs. The programmer has to ensure that no FIFO overflow can
occur by setting up the appropriate value for input FIFO lower limit (IFDMA_LL) or output FIFO upper
limit (OFDMA_UL) (see chapter 1.7.3 for a detailed description).

Figure 1-16 shows a write DMA transfer in block mode. The block size is set to 10 words. Despite of this

Jasmine4 toggles the ULB_DREQ signal after every falling edge of ULB_DACK signal because it does not
know the MCU settings. It can not distinguish between block-, step- or burst mode.

1. For write DMA: IFDMA_LL >= input FIFO load; for read DMA: OFDMA_UL <= output FIFO load.

2. For Jasmine one complete fill cycle contains 64 words.

3. This is the first high to low edge of the ULB_DACK signal combined with a valid chip select signal.

4. Lavender shows the same behaviour but this example was made with Jasmine.

Figure 1-15: Write DMA in demand mode
Functional description Page 65

MB87J2120, MB87P2020-A Hardware Manual
1.7.3 DMA settings

In order to use DMA feature for display controller it is necessary to set up DMA according to table 1-13.

DMAFLAG_EN is the general DMA enable flag; if this bit is set to ’0’ all DMA operations are stopped. Ad-
ditionally the falling edge of this flag during a running DMA transfer causes a reset of GDC-DMAC and
MCU-DMAC via ULB_DSTP signal in order to stop DMA transfer completely. This is important because
the transferred data belong to a command and a running DMA transfer influences next command and its
data stream which is not necessarily controlled by DMA.

For DMA operation only one DMA channel is available between display controller and MCU. Therefore
only one FIFO can be written or read per DMA at a given time. The programmer can select the FIFO that
should be read or written with help of DMA by set DMAFLAG_IO according to table 1-13. An additional
gate with ULB_WRX or ULB_RDX ensures that only accesses for the selected mode are accepted.

The selected DMA mode can be selected with DMAFLAG_MODE. See chapter 1.7.2 for more details
about DMA modes.

The trigger condition for DMA start can be set separately for input (IFDMA_LL) and output FIFO
(OFDMA_UL). It represents a FIFO load and is completely independent from flag settings according to flag

Table 1-13: DMA register settings

Register Bits Flag
name

Description Default
value

Name Address

IFDMA 0x0088 7/6a:0

a. Lavender/Jasmine value due to different FIFO sizes

LL
• Lower limit for DMA access to

input FIFO
10

OFDMA 0x008C 23/22a:16 UL
• Upper limit for DMA access

from output FIFO
60

DMAFLAG 0x0090

12:8 DSTP
• Duration of ULB_DSTP signal in

ULB clocks.
7

2 MODE
• ’1’: DMA demand mode
• ’0’: DMA block/step- or burst

mode
0

1 EN • ’1’: enable DMA 0

0 IO
• ’1’: use DMA for input FIFO
• ’0’: use DMA for output FIFO

1

Figure 1-16: Write DMA in block mode
Page 66

User Logic Bus
description table in appendix. Figure 1-17 shows the meaning of these limits for input and output FIFO
while in table 1-14 the calculation for transfer sizes for FIFOs is listed.
In case of input FIFO the FIFO load has to be equal or smaller to meet trigger condition for DMA. For output
FIFO the load has to be equal or greater to trigger DMA transfer (see also figure 1-17).

Because the FIFOs can be accessed from GDC side (read from input FIFO and write to output FIFO) when
trigger condition becomes true the FIFO load itself is taken for calculation. In figure 1-17 this situation is
drawn.

1 (2)

(3)

For block/step- or burst mode condition (2) should be fulfilled for input FIFO in order to avoid FIFO over-
flow. For output FIFO at least one block should be available so that the condition (3) should be met. Oth-
erwise wrong data may be delivered because BLOCKSIZE is transfered at once and not all data are available
at transfer time.

For setup of DMA trigger levels the GDC internal packet sizes for data processing have to be considered.
This are IPA block transfers and REQCNT for pixel data packetizing in Pixel Processor. It depends on com-
mand how many words are read from input FIFO or written to output FIFO at once. The amount of data
words is determined by type of command data stream (address informations, colour data with different col-
our depths). See command description in appendix for a detailed command description.

In general the at once processed information must be available in IFIFO or has to fit into OFIFO. If this state
is not reached the execution devices wait for data transfer by MCU until the requirements are fulfilled. If
the DMA trigger levels are not set up accordingly deadlock situations can occur (data lack or jam).

Table 1-14: Transfer count calculation for DMA

Mode Input FIFO Output FIFO

Demand mode trans = FIFOSIZEa - FIFO load

a. see table 1-10 for FIFO sizes for Lavender and Jasmine

trans = FIFO load

Block/step- or burst
mode

trans = <MCU defined> trans = <MCU defined>

1. BLOCKSIZE is the amount of words which is transfered at one DMA request (depends on MCU settings).

�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

tr
a

n
s

tr
a

n
s

0

FIFOSIZE

Input FIFO Output FIFO

IFDMA_LL

IFDMA_UL

Figure 1-17: FIFO limits for DMA transfer

IFDMA_LL FIFOSIZE≤ BLOCKSIZE–

OFDMA_UL BLOCKSIZE≥
Functional description Page 67

MB87J2120, MB87P2020-A Hardware Manual
For DMA demand mode settings according to (4) (0x3f for Jasmine, 0x7f for Lavender) to keep the input
FIFO full all the time and according to (5) to keep output FIFO flushed all the time avoid problems with
internal packetizing. Data will be transferred immediately if possible.

(4)

(5)

For DMA Block/Step/Burst mode other trigger levels are required due to additional restriction for MCU
block transfer sizes (see equation (2) and (3) with their description).

Also at demand mode it is possible to set up other trigger levels in order to transfer more words at once. In
this cases special care should be taken to avoid the described deadlock situations. Reserve for required data
amount (IFIFO) or space (OFIFO) for packetized procession must be guaranteed all the time.

There are two possibilities to stop DMA transfer. The first is the falling edge of DMAFLAG_EN as already
mentioned. The second possibility is to interrupt the running command by a SWReset command. Because

the DMA controlled stream is normally coupled to the currently executed command1 interruption of this
command should also cause DMA dropout. Because of FIFO reset during SWReset already transferred
data will also be deleted.

1.7.4 DMA programming examples

In figure 1-18 an example for a MCU- and Lavender DMA initialization is given. The MCU DMA channel
’0’ is used for DMA connection.

In DMACB0 and DMACA0 MCU registers the parameters for MCU-DMAC are set; with set of Bit 31 in
DMACR DMA operation is enabled inside MCU.

;;; DMA variables

blk_dma1: equ 1 ; block size

dtc_dma1: equ 0 ; transfer count

ofhigh_dma1: equ 1 ; DMA limit

dma1a: equ 0x8e100000 + (blk_dma1 << 16) + dtc_dma1) ; build data word for DMACA0

dma1of: equ (ofhigh_dma1 << 16)

;; ---------------------------------
;; Init DMA for Data output

;; ---------------------------------
writereg DMASA0, G0OFIFO ; source address

writereg DMADA0, 0x001c0000 ; destination address

writereg DMACB0, 0x28000004 ; type=00,md=10(demand),ws=10(word),inc.destination

writereg DMACR, 0x80000000 ; enable MCU-DMAC

writereg DMACA0, dma1a

writereg G0OFDMA, dma1of

writereg G0DMAFLAG, 0x00000206 ; OF, EN_DMA=1, demand mode, DSTP=2

; writereg G0DMAFLAG, 0x0000021E ; OF, EN_DMA=1, demand mode, DSTP=2, INV, TRI

; wait for DMA to finish

waitdma2:

 readreg DMACA0 ;nach r2

 ldi #0x80000000, r3

 and r3, r2

 bne waitdma2

Figure 1-18: MCU- and GDC-DMA initialization example

1. For input FIFO it is also possible to deliver data for waiting command (see section 1.5). But the SWReset
command flushes the command pipeline completely so that also the waiting command will be deleted. DMA
transfer has to stop anyway.

IFDMA_LL FIFOSIZE 1–=

OFDMA_UL 1=
Page 68

User Logic Bus
The chosen DMA mode is demand mode which should be set inside MCU and display controller. Addi-
tionally for display controller the output FIFO is selected for DMA operation and signal inversion and
tristate behaviour is not selected according to board implementation (see chapter 1.3.4). The DMA trigger
limit for output FIFO is set to 1 (register: G0OFDMA) which means that every new data word in output FIFO
causes a DMA transfer. In demand mode this ensures an empty FIFO after DMA operation but this causes
also a lot of protocol overhead because a handshake between display controller and MCU is necessary for
every data word. Therefore transfer performance may decrease slightly.

The loop labelled with ’waitdma2’ at the end of figure 1-18 stops program execution until the end of DMA
transfer. The following code can assume that data are transferred from display controller to MCU also as
result of this low FIFO limit.

Figure 1-19 shows an example where a RLE compressed bitmap is transferred to display controller with
help of DMA. This example uses C-API functions which are described in detail in a separate manual. See
C-Comments for a short explanation.
/***/

/* Constant declarations */

/***/

// Picture infos:

// - RLE compressed.

// - 16BPP.

// - 111 x 43 pixel, origin: 0, 0

// Picture dimensions

const hd_fujitsu_x = 111;

const hd_fujitsu_y = 43;

// Number of data words for ’hd_fujitsu’ array

const hd_fujitsu_num = 800;

// Array definition

const dword hd_fujitsu_array[] = {

 0xeeffdfb8,

 0xffdf04fd,

 // ..data..

 0xdf000000};

void main(void)

{

 // use DMA (demand mode)

 // ---

 // Set up MCU- and GDC-DMAC

 // ---

 // ULB_DMA_HDG(dummy,dummy,mode,block,direction)

 // mode: 00: block/step, 01: burst, 10: demand

 // block: block size (1 in demand mode)

 // direction: 1: input FIFO; 0: output FIFO

 ULB_DMA_HDG(0, 0, 2, 1, 1);

 // ---

 // write parameter and command (see API description)

 // ---

 GDC_CMD_PtCP(0x0,hd_fujitsu_x-1,0x0,hd_fujitsu_y-1,0x0,0x0,0x0,0x0,0);

 // ---

 // activate DMA transfer

 // ---

 GDC_FIFO_INP((dword *)hd_fujitsu_array, (word)hd_fujitsu_num, 1);

 // ---

 // wait for end of transfer

 // ---

 while ((DMACA0 & 0x80000000) != 0);

 // ---

 // send NoOp in order to flush input FIFO

 // ---
Functional description Page 69

MB87J2120, MB87P2020-A Hardware Manual
 GDC_CMD_NOP();

}

Figure 1-19: DMA programming example with help of C-API

The first step is to initialize MCU-DMAC as well as GDC-DMAC with help of API function
’ULB_DMA_HDG’. This function does not start the transfer; it sets only DMA parameters for the following
transfer.
Afterwards the command for writing compressed bitmaps to display controller is sent to command register
together with the dimensions of the bitmap. See chapter 1.5 for more details about command execution.
With help of API function ’GDC_FIFO_INP’ DMA transfer is started. Note that the last function param-
eter is ’1’ which means that DMA transfer is enabled (see chapter 1.5.1 for a discussion about this function).
In order to synchronize DMA data flow with program flow a wait loop for end of DMA transfer is included
into the source code. This is not necessary in any case since the API functions ’ULB_DMA_HDG’ and
’GDC_FIFO_INP’ wait for the end of previous DMA transfer before they perform any action.
In the example in figure 1-19 the DMA synchronization is necessary in order to make sure that all data are
transferred when a NoOp command is sent to display controller to force a input FIFO flush. Without this
synchronization not sent data would be kept for the next command after NoOp.
Page 70

User Logic Bus
2 ULB register set

2.1 Description

Some ULB registers are controlled by ULB itself and some are handled by CTRL in the same manner as
for all other GDC components. For the programmer there is no difference accessing these registers. An
overview on ULB- and CTRL controlled registers has already been given in table 1-5, section 1.4.

In table 2-1 an overview on all ULB registers is given. All addresses are relative to start of register space
for given GDC; see section 1.4 for details. The address values are byte addresses and can be accessed in
word (32 Bit), halfword (16 Bit) or byte (8 Bit) mode from MCU, except the FIFOs which can only be ac-
cessed in word mode.

Flag and interrupt mask register handling:

As already mentioned in section 1.6 the ULB contains one flag- and one interrupt mask register with special
access modes; therefore in table 2-1 flag- and interrupt mask register have each three addresses.

Table 2-1: ULB register description

Register Bits Group
Name

Description Default value

Name Address

CMD 0x0000
31:8 PAR Command parameter 0

7:0 CODE Command code 0xFF (NoOp)

IFIFO 0x0004 31:0 - Input FIFO -

OFIFO 0x0008 31:0 - Output FIFO -

FLNOM 0x000C 31:0 - Flag register (normal write access)a 0x20400000

FLRST 0x0010 31:0 - Flag register (reset write access)a 0x20400000

FLSET 0x0014 31:0 - Flag register (set write access)a 0x20400000

INTNOM 0x0018 31:0
- Interrupt mask register (normal

write access)
’1’: use flag for interrupt

0

INTRST 0x001C 31:0
- Interrupt mask register (reset write

access)
’1’: use flag for interrupt

0

INTSET 0x0020 31:0
- Interrupt mask register (set write

access)
0

INTLVL 0x0024 31:0

Interrupt level/edge settings
’1’: positive edge of flag triggers

interruptb

’0’: high level of flag triggers inter-
rupt

0xFFFFFFFF

WNDOF0 0x0040 20:0 OFF MCU offset for SDRAM window 0 0x10000

WNDSZ0 0x0044 20:0 SIZE Size of SDRAM window 0 0x20000
ULB register set Page 71

MB87J2120, MB87P2020-A Hardware Manual
WNDOF1 0x0048 20:0 OFF MCU offset for SDRAM window 1 0x50000

WNDSZ1 0x004C 20:0 SIZE Size of SDRAM window 1 0x00001

WNDSD0 0x0050 23:0
OFF SDRAM offset for SDRAM

window 0
0x000000

WNDSD1 0x0054 23:0
OFF SDRAM offset for SDRAM

window 1
0x100000

SDFLAG 0x0058 0

EN ’1’: enable SDRAM space for

GDCc

’0’: any access to SDRAM space is

ignored by GDCc

0

IFUL 0x0080

23:16

UL Input FIFO upper limit for flag- or
interrupt controlled flow control
Flag IFH=1 if

IFLOADd >= IFUL:UL

0x0C

7:0

LL Input FIFO lower limit for flag- or
interrupt controlled flow control
Flag IFL=1 if

IFLOADd <= IFUL:LL

0x03

OFUL 0x0084

23:16

UL Output FIFO upper limit for flag- or
interrupt controlled flow control
Flag OFH=1 if

OFLOADe >= OFUL:UL

0x3C

7:0

LL Output FIFO lower limit for flag- or
interrupt controlled flow control
Flag OFL=1 if

OFLOADe <= IFUL:LL

0x0F

IFDMA 0x0088 7:0
LL Lower limit for DMA access to

input FIFO
0x0A

OFDMA 0x008C 23:16
UL Upper limit for DMA access from

output FIFO
0x3C

Table 2-1: ULB register description

Register Bits Group
Name

Description Default value

Name Address
Page 72

User Logic Bus
DMAFLAG 0x0090

12:8

DSTP Duration of ULB_DSTP signal.
This value can be set in order to
ensure a save MCU-DMAC reset.
Normally the default value should
work.

7

4
TRI ’1’: Set ’1’ to tristate (’Z’) for

ULB_DREQ, ULB_DSTP and
INTRQ

0

3
INV ’1’: Invert ULB_DREQ,

ULB_DSTP and INTRQ
0

2
MODE ’1’: DMA demand mode

’0’: DMA block/step- or burst
mode

0

1 EN ’1’: enable DMA 0

0
IO ’1’: use DMA for input FIFO

’0’: use DMA for output FIFO
1

FLAGRES 0x0094 31:0
- ’1’: set flag to dynamic behaviourf

’0’: set flag to static behaviourf
0x20400000

ULBDEB 0x0098

23:16

IFLC Input FIFO load for current com-
mand
Attention: This value changes with
GDC core clock; correct sampling
by MCU can’t be ensured.
Value is read-only; writing is
ignored.

0x00

15:8

OF Output FIFO load
Attention: This value changes with
GDC core clock; correct sampling
by MCU can’t be ensured.
Value is read-only; writing is
ignored.

0x00

7:0

IF Input FIFO load independent from
current command
Attention: This value changes with
GDC core clock; correct sampling
by MCU can’t be ensured.
Value is read-only; writing is
ignored.

0x00

a. For meaning of flags and default value see section 1.6.

b. Attention: This is only allowed when GDC core clock is equal to ULB bus clock (see section 1.6)

c. See section 1.4.

d. IFLOAD: Input FIFO load

e. OFLOAD: Output FIFO load

f. For a description of flag handling see section 1.6.

Table 2-1: ULB register description

Register Bits Group
Name

Description Default value

Name Address
ULB register set Page 73

MB87J2120, MB87P2020-A Hardware Manual
2.2 ULB initialization

ULB contains no lockable registers; so it is possible to write to every register at any time.

There is no initialization order for ULB but some general rules should be followed:

• For Lavender INTLVL register should normally be set to 0x00000000 in order to trigger interrupt on
high level (see section 1.6 for more details).

• SDRAM space for direct memory access has to be initialized and enabled for use. Write valid values to
WNDOFx, WNDSZx, WNDSDx and 0x00000001 to SDFLAG. Be careful about overlapping windows
when more than one GDC is connected to MB91xxxx (see section 1.4 for more details).

• Initialize IFUL or OFUL with valid limits before using FIFO limit flags (OFH,OFL,IFH,IFL) for in-
terrupt or polling. Otherwise default values will be taken as valid limits.

• Initialize MCU, IFDMA, OFDMA and DMAFLAG in this sequence with valid values in order to use DMA
for data transfer (see section 1.7 for details). Note that DMAFLAG_EN should be written at last because
it starts DMA transfer triggered by GDC.

• FLAGRES register should be initialized correctly before interrupt is enabled inside MCU or flags are
polled within user program in order to meet applications need.

• Read-only ULBDEB register exists only for debugging purpose; in normal applications flags in connec-
tion with FIFO limits should be preferred.
Page 74

B-3 SDRAM Controller (SDC)
Page 75

MB87J2120, MB87P2020-A Hardware Manual
Page 76

SDRAM Controller
1 Function Description

1.1 Overview

This module is part of a graphic display controller (GDC) especially for automotive applications. The GDC
supports a set of 2D drawing functions (Pixel Processor) a video scaler interface, units for physical and di-
rect video memory access and a powerful video output stream formatter for a great variety of connectable
displays.

Inside the GDC there is a memory controller which arbitrates the internal modules and generates the re-
quired access timings for SDRAM devices. With a special address mapping and an algorithm for generating
optimized control commands the controller can derive full benefit from 4-bank-interleaving supported by
the SDRAMs. So the row activation time is hidden if switching to another memory bank in most cases. This
increases performance respective at random (non-linear) memory access. Power down modes with Clock

Suspend (CSUS) with and without SELF-Refresh are supported.1

The SDRAM Controller arbitrates GDC internal device requests for data transfers from/to the video mem-
ory. Important is also the address calculation which controls the mapping from a given logical address (in
layer, x- and y-pixel format) to the physical bank, row and column address. Thus the other devices are in-
dependent from the physical implementation of the memory structure.

If the Application for GDC needs physical video memory (frame buffer) access, knowledge is needed how
a logical address (layer, x, y) is converted to the physical address in video memory and how this address
maps into physical host MCU address space. There is also a buffered access method without mapping into
MCU address space possible, then only internal video memory address is of interest.

1.Jasmine implementation (GDC with integrated DRAM) makes use of an integrated single-bank
SDRAM. Therefore special features as 4 bank interleaving and power suspend/self refresh are not
supported by the device.

PP

DIPA

GPU

VIC

D

D
Intra Word

Pixel Addressing

D

CMD

w
rit

e
DQM

Arbiter

Address
Calculation

A

Layer
Information

Command Controller

refresh timer

4 x 512k x 32 Bit
64M SDRAM

D

Figure 1-1: SDC Block Diagram embedded into GDC
Function Description Page 77

MB87J2120, MB87P2020-A Hardware Manual
Main functionality is to provide an arbitrated video memory access for GDC components such as Pixel
Processor (PP), Direct/Indirect Memory Access (DIPA), the Video Interface Controller (VIC) and finally
the Graphic Processing Unit (GPU) which reads pixel data from memory and formats the output stream.
Because of the different requirements of the various components there are to support various access types,
such as burst and block modes with adjustable transfer sizes.

1.2 Arbitration

The arbitration of the four main GDC parts works priority based. The setup of priority values can be decided
by the requester component itself and is signalized to the SDRAM controller. The benefit is that the setup
can vary for different applications. There is also the possibility to change priority on the fly, e.g. if buffer
state changes. The connected component can decide about the urgency of the transfer.

Video RAM arbitration is done in principle of cooperative multitasking. This did not waste bandwidth if a
requester device uses only a part of its dedicated bandwidth as if time slicing would be used. All devices
share the commonly available bandwidth resource. Main advantage is that system performance could be
scaled and optimized for a wide range of different applications.

A decision about granting the next device is done priority based at the end of a currently processed device
request. The currently processed device is excluded from priority based selection for the next one. This re-
sults in granting requests for the two devices with given highest priorities alternately, if requested. Only
idling between these two devices could be used for the other ones. Therefore the devices with the two high-
est priorities could be considered as real-time (normally this should be GPU and VIC).

1.3 SDRAM Timing

Configurable options for the appropriate SDRAM timings listed in table 1-2. Defaults are listed for 100
MHz SDRAM types of MB811643242A for Lavender. Values for integrated DRAM version for Jasmine
are given in a separate column. The configuration value is a number of wait states. That means additional

Table 1-1: GDC modules and its priority registers with recommended configuration

Device Register Comment

GPU SDCP_LP = 3 SDCP_HP = 7 low and high priority, real time device
with automatic priority scaling

VIC SDRAM_LP = 2 SDRAM_HP = 6 low and high priority, real time device
with automatic priority scaling

PP/AAF SDCPRIO = 1 no automatic priority scaling sup-
ported

DIPA DIPACTRL_PDPA = 5 DIPACTRL_PIPA = 0 priorities for DPA and IPA access

Table 1-2: SDRAM Command Timings

Parameter Default Jasmine Description

tRP (RAS Precharge
Time)

30 ns 22.5 ns Time from same bank PRE to row ACTV com-
mand

tRRD (RAS to RAS Bank
Active Delay Time

20 ns - Time from ACTV to opposite bank ACTV com-
mand

tRAS (RAS Active Time) 60 ns 37.5 ns Time from ACTV to same bank PRE command
Page 78

SDRAM Controller
clocks of idling before the next SDRAM access command. So the configuration value is lower by one than
the required timing from the SDRAM data sheet. If an absolute minimum time is given it’s necessary to
evaluate the corresponding number of clock periods for configuration. This depends on and should be op-
timized for the required core clock frequency.

Following procedure should be used:

1. divide given timing by the core clock period

2. round up to next integer

3. subtract one to have the right wait-state value

CAS Latency can be setup to values of 2 or 3 for Lavender. Jasmine is not programmable for different CL
values.

Additional configurable options are the refresh period (normally 16 us for one row) and the power on sta-
bilization timer (200 us) before the first initialization sequence begins to run. The refresh counter is reset
after each execution of a single row refresh job (not considering if it runs as time-out or idle task) and it
causes an time-out if the counter value reaches zero. The configuration values are given in a number of sys-
tem clocks.

1.4 Sequencer for Refresh and Power Down

Fixed command sequences such as SDRAM initialization, auto refresh, power down or wake-up and trans-
fers of special data structures are easier to implement in a fixed and preprogrammed manner. These tasks
are assigned to the sequencer unit of SDC.

To keep the amount of memory low and guarantee a defined device shutdown the power down sequences
are not a part inside the standard micro program for refresh and initialization. However special power down
sequences are loaded into memory when needed. If the SDC currently processes a transfer controlled by the
address/command generator unit these sequence will be finished normally and then the new loaded routine
inside the micro program storage is executed.

One word of micro program code consists of an address argument (bits [12:6] for Lavender, bits [11:6] for

Jasmine1), flow control instruction and a container command (SDRAM command).2 Figure 1-2 shows the

format of one micro program entry. Bits [3:1] of SDRAM command coding the RAS, CAS and WE signal.
The internal representation is inverted compared with the SDRAM ports. Bit [0] for controlling the auto
precharge (AP) feature is not controllable by the sequencer and internally fixed to ’0’. Table 1-3 lists the

tRCD (RAS to CAS Delay
Time)

30 ns 22.5 ns Time from same row ACTV to READ or WRIT
command

tRW (Read to Write

Recovery Time)a
10 (8) T 7 (5) T Pipeline recovery time from each READ to

WRIT command

a.This setup is not regarding DRAM timing, but required to avoid bus collision on internal busses
or external SDRAM tri-state busses due to pipelined operation. Values in parenthesis are possible
if anti aliasing filter is switched off and then no read-modify-write access is required.

1.Jasmine has reduces sequencer size of 32 words. Thus address argument is 5 bit only.

2.Logical address operations and data validation flag are not needed in this application without
preprogrammed data structures.

Table 1-2: SDRAM Command Timings

Parameter Default Jasmine Description

12 031 35613 4 1

address sdram_cmdinstrnot used

Figure 1-2: Micro program entry
Function Description Page 79

MB87J2120, MB87P2020-A Hardware Manual
possible entries. In this Application there is no preprogrammed data transfer implemented. So the com-
mands actv, writ, read and bst should not be used. Sequence programming is done with special flow control

instructions, sub program calls, loops, power down entry and exit are supported.1 Table 1-4 lists possible
flow control instructions and their coding.

In general it’s recommended to use the ’mkctrl’ tool for GDC setup. It optimizes SDRAM timing based on
core clock frequency, calls the asmseq sequencer program and generates valid code for the sequencer. An
example of the micro code is provided with the assembler tools. There is also a compression tool which gen-
erates smaller programs with sub-routine calls from a linear coded micro program (asmseq_delay).

Size of sequencer memory is 64 entries for Lavender and 32 entries for Jasmine.

Table 1-3: SDRAM control commands

Mnemonic Description Representation
{ras, cas, we}

mrs Mode Register Set 111

ref Auto/Self Refresh 110

pall Precharge all Banks 101

actv Activate Row 100

writ Write 011

read Read 010

bst Burst Stop 001

nop No Operation 000

1.Read-write control, supported by the assembler (srw, rrw) is not implemented. There are no data
structures programmable for special transfers.

Table 1-4: Flow control instructions

Mnemonic Description Representation

run Run linear program
flow

000

ret Return from sub rou-
tine

001

call Call subroutine on
address argument (no
nested calls possible)

010

loop Repeat program at
address argument if
loop counter not
reached

011

end Alias for ’loop #0’
when loop counter is
’1’

011

pde Power down entry 110

pdx Power down exit 111
Page 80

SDRAM Controller
1.5 Address Mapping

This section describes the relationship between logical and physical addresses and how to map from a given
logical address to the physical memory position. At the begin we have to introduce the meaning of the used
Layer Description Record (LDR) information. The Address Unit uses the parameters of the 16 LDR entries:

• PHA(i) Physical Address Offset

• DSZ_X(i) Domain Size X

• CSPC_CSC(i) Color Space Code.

The address offset PHA, stored in the LDR, describes the start address of a layers position. This is where the
most upper left pixel of a picture is located. Due to the block structure of the picture data, only the part of
the row address is valid for the physical start address offset entry (bits [22:12] for Lavender or [19:10] for
Jasmine, see figure 1-3). Lower bits are fixed to ’0’. That restriction applies because of the same row can’t
be used for different layers. Domain size in X-dimension DSZ_X is given in logical pixels. It is needed to
calculate the pixels per line. The Y-dimension is not needed, there is no automatic layer size limitation im-
plemented. Please note that there is no DSZ_Y register implemented. Color space code CSPC_CSC is a rep-
resentation of the appropriate color format. It is converted internally to calculate the bits per pixel (bpp) by
power of two, which is equal to the number of bits the pixel address has to be shifted to get the right word
address.

The physical address is a combination of SDRAM bank, row and column address. The significance is pre-
defined in following order from row over bank to column address. Thus the picture data is stored in a block-
ing structure drawn in section 1.5.1, figures 1-6/1-7. Additional to physical word addressing there can be
distinguished between several byte addresses. The complete physical address format is shown in figures 1-

Table 1-5: Color Space Codes

Code Color Space Type bpp Shift

0x0 1bpp 1 0

0x1 2bpp 2 1

0x2 4bpp 4 2

0x3 8bpp 8 3

0x4 RGB555 16 4

0x5 RGB565 16 4

0x6 RGB888 32 5

0x7 YUV422 16 4

0x8 YUV444 32 5

0x9-0xD reserved for GPU intermediate color space

0xE YUV555a

a.Jasmine only

16 5

0xF YUV656a 16 5
Function Description Page 81

MB87J2120, MB87P2020-A Hardware Manual
3 and 1-4 as it is used for IPA and DPA access methods.For LDR entries of PHA only row bits are valid,

lower bits are fixed to ’0’. This is due to the physical start address is aligned on the row grid.

For comparison, logical address format is shown in figure 1-5.

Now back to the relationship between logical pixel address containing layer, X and Y location and the phys-

ical mapping of the pixel data. The needed bits per pixel line of the layer can be calculated as1

XBits = DomSzX << Shift = DomSzX * bpp

Remark: Expression ’<< Shift’ interpretable as ’* bpp’ with the restriction

that bpp has a value range of power of two { }

For determining Shift value from its Color Space Code see table 1-5. It depends on the layer number and
how CSPACE is configured for it.

Layer memory can only be divided into whole numbered parts of rows in each dimension. Each row seg-
ment has a width of 8 words. Lavender uses 2 adjacent banks with same row number, thus a virtual row of
16 words is formed. From the number of bits the needed number of horizontal memory rows is

XRows = XBits[18:9] + (XBits[8:0]? 1: 0) (for Lavender)

XRows = XBits[18:8] + (XBits[7:0]? 1: 0) (for Jasmine)

Finally the row, bank and column addresses can be derived from the logical address components and this
temporary values. Con catenation of row, bank and column address enhanced with 2 bits for byte addressing
results in the physical address.

RA = Y[13:6] * XRows + (X << Shift)[18:9] (for Lavender)

RA = Y[13:5] * XRows + (X << Shift)[18:8] (for Jasmine)

BA = {Y[5], (X << Shift)[8]} (for Lavender only)

CA = {Y[4:0], (X << Shift)[7:5]}

1.Squared brackets stand for vector slices, curly braces are vector combinations.

1222 11 10 9 2 1 031 23

not used row bank column byte

Figure 1-3: Physical address format (Lavender)

10 9 2 1 031

column byte

1920

not used row

Figure 1-4: Physical address format (Jasmine)

031 15 1430 29 16 13

Layer [3:2] X Layer[1:0] Y

Figure 1-5: Logical address format

2
0

2
1

2
2

2
3

2
4

2, ,
5

, , ,
Page 82

SDRAM Controller
1.5.1 Elucidations regarding Address Mapping

1.5.1.1 Block Structure of Pixel Data

DRAMs have not equal access timings if randomly accessed. If a ROW address is already activated, faster
access can be done. Each ROW consists of 256 COL addresses.

As compromise between horizontal and vertical operation a block oriented access scheme is implemented.
A block is identical with one ROW, each 256 COL addresses with faster access. Disadvantage of this block
structure is a more complicated pixel addressing over direct physical access methods. Block size is defined

to 8 words horizontal1 and 32 lines vertical2. For example, this results to 32x32 pixel block size at 8 bpp.

If bank interleaving is used (on Lavender chip), same ROW address for each of the 4 banks are combined
to a macro block with double size in horizontal and vertical dimension. This gives the chance to activate a
ROW in another bank before reading from it during access is running on another bank. This hides row ac-
cess time in most cases.

For access by pixel address the block structure is not relevant. It is mapped automatically by hardware to
the right physical address. If non-picture data or data which should not be displayed is stored via physical
access, address can be interpreted as linear space without rows, banks and columns. Only if physical access
on graphic data is required, the block based philosophy should be considered.

1.number of pixels depending on color depth (bpp)
2.word and pixel have same meaning
Function Description Page 83

MB87J2120, MB87P2020-A Hardware Manual
1.5.1.2 Access Methods and Devices

This section is not SDC relevant but the reader can have benefit in better architectural understanding of the
GDC device. It depicts setup of other GDC macros which are related to addressing data in memory.

• Pixel addressing for drawing commands

There are two main sections of command regarding addressing method. First group uses pixel address in-
formation over input FIFO, second group makes use of registers for pixel coordinates.

Commands Grp1 (FIFO): PutPixel, PutPxWd, PutPxFC, GetPixel, XChPixel,

DwLine, DwPoly, DwRect, MemCP

If PPCMD_ULAY register set to 0, complete logical address information is fed through Input FIFO. Format
consists of Layer, X and Y position. The 32 bit pixel address word is combined to (from MSB to LSB)
{L[3:2], X[13:0], L[1:0], Y[13:0]}.

If PPCMD_ULAY register set to 1, layer information is used from layer register PPCMD_LAY and is not
evaluated from Input FIFO. The appropriate layer bits of Input FIFO data are don’t care. Address Format
consists of X and Y position. The 32 bit pixel address word is combined to {L[- -], X[13:0], L[- -], Y[13:0]}.

Commands Grp2 (REGs): PutBM, PutCP, PutTxtBM, PutTxtCP

...

Colu
m

n

070
00

F8

F8

08

00

...

7......

ROW
 2

W
ord

ROW
 0

ROW
 1

...

BANK 0

BANK 2

BANK 3

BANK 0

BANK 1

BANK 2

BANK 3

BANK 0

BANK 1

BANK 1

BANK 2

BANK 3

Figure 1-6: Memory Mapping of Bank, Row and Column Address (Lavender)
Page 84

SDRAM Controller
These Commands have it’s dedicated coordinate registers. No address information is fed through Input
FIFO. They are using XYMIN, XYMAX, PPCMD_LAY registers.

• Direct memory mapped Physical Access (DPA)

Command Interface is not necessary for this access method. However some specialities should kept in con-
sideration while using the DPA interface.

— DIPA clock is enabled

— DPA should be enabled by setting SDFLAG to ’1’

— Two windows are possible to map into MCU address space (shares GDC Chip Select)

— Window address offset WNDOF and size WNDSZ are mapped to required address space

— WNDSD is set to the section start address of video RAM which appears in the window

Mapped address calculates to

PHY_MAP = CS_REGION + WNDOF - WNDSD.

WNDSZ limits size of accessible address range. If exceeded no write permission is granted and tri-state
buffers kept close at reading.

DPA runs completely unbuffered. Additional there are no real-time or preferred data channels to the video
RAM available, the normal SDC requesting and arbitration procedures apply. The normal case is that DPA

ROW

ROW
 3

ROW
 2

...

...

Colu
m

n

070
00

F8

F8

08

00

...

7

ROW

ROW
 n

ROW

... W
ord

...

ROW
 0

ROW
 1

n+1
n+2

2n

......

......

Figure 1-7: Memory Mapping of Row and Column Address (Jasmine)
Function Description Page 85

MB87J2120, MB87P2020-A Hardware Manual
has to wait for higher prioritzed jobs an the currently running task for completion. Thus only a slow access
and difficult predictable timing results from this behaviour.

The not predictable access time requires DPA_RDY polling at writing due to the RDY line pull down feature
is in general only supported for read access in GDC.

With setting higher Priority for DPA access than GPU (display output) this situation can be improved. This
can help when high bandwidth components are running continuously, i.e. GPU, PP and VIC. The risk of
interrupting the real-time streams of GPU and VIC increases only negligible, but beware of changing de-
fault priority when working at the upper limit of bandwidth consumption.

• Indirect Physical Access (IPA)

Commands: PutPA, GetPA

IPA makes full benefit of physical access while using burst transfer techniques. Additional no restrictions
apply with address range limitation. Physical address is transferred to the Input FIFO. Data packets are also
routed through Input or Output FIFOs. To achieve maximum data throughput physical address auto-incre-
ment is implemented for GetPA function.

If logical pixel data is transferred via physical access, be aware of physical address incrementing method.
Due to the fact that single transfers with converted addresses (logical to physical) are not effective over this
device, the user should check if block based transfers are possible. Pixel data have to be divided into seg-
ments even to 8 data words in X-dimension and then next line of block can be transferred. Burst transfer
should start aligned on the block grid (8x32 words). With this method only one start address has to be con-
verted and sent followed by a data block transfer of up to 256 words is possible. Another way is the transfer
of 8-words line segments with a start address with only moderate amount of address overhead. This has the
advantage that there is no need for restricting pixel position to the block grid in Y-dimension.

Problematic in any case is random access on pixels over physical addresses. Command and address calcu-
lation effort is too high. Dedicated Pixel commands should be used then.

If packetized block transfer is used, priority of IPA device has not that much influence on data rate com-
pared to DPA. But increasing of IPA priority may cause interruption of real-time processes of VIC and
GPU. Only two devices with highest priority setting are kept as real-time due to the arbitration scheme.

Important parameters for IPA are Input and Output FIFO data amount MIN/MAX thresholds
(DIPAIF_IFMAX, DIPAIF_IFMIN, DIPAOF_OFMAX, DIPAOF_OFMIN). This thresholds control when
a transfer is started/stopped (max) and adjust block size of memory transfers (min). Higher block size im-
proves performance but increases risk of data stream interruption for other devices.

1.5.1.3 Program Example

Following example demonstrates address mapping and physical access with relationship to pixel coordi-
nates. Intention is to draw a rectangular area with radiancies and finally copy the drawn object per physical
access.
Page 86

SDRAM Controller
The example given in figure 1-8 did not use polling of DPA_RDY flag. The information that the DPA de-
vice is ready for writing is implicitly given by the finished read access before. DPA has a two-stage buffer
and read access is synchronized by using the hardware flow control over ULB_RDY line. The following
write access has at least one free buffer available.

 /* ... before this section of code INIT_GDC from mkctrl tool was included */

 ClrLayer(0x008080, 0);
 ClrLayer(0x008080, 1);

 /* ... here initialization of window handles W0...W2 is normally included */

 xoff = 30;
 yoff = 45;
 aafen = 1;

/* DEMONSTRATION OF PHYSICAL ACCESS - DRAW ORIGINAL PATTERN */
 puts (&W0, "[1] Drawing original pattern\n");
 DrawRect (0xd0d000, 0, xoff, yoff, 100, 100);

 GDC_CMD_NOP(); /* Cancel DwRect before AAF enable */
 PXP_AAF_THE(aafen);

 for (ang=0; ang<6.2828; ang+=0.15707) { /* draw radiancies */
 recx = (word) (50*sin(ang));
 recy = (word) (50*cos(ang));
 DrawLine(0x000000, 0,
 (xoff+50)<<aafen, (yoff+50)<<aafen, /* double size if AAF enabled */
 recx<<aafen, recy<<aafen);
 }
 GDC_CMD_NOP();
 PXP_AAF_THE(0);

/* DEMONSTRATION OF PHYSICAL ACCESS - COPY TO DESTINATION WOINDOW */
 puts (&W0, "[2] Copy using physical access\n");

 for (x=xoff; x<xoff+100; x++) {
 for (y=yoff; y<yoff+100; y++) {
 src = phy_address(0, x, y);
 dest = phy_address(1, x, y);
 *(dword *)dest = *(dword *)src;
 }
 }

 puts (&W0, "[3] finished.\n");

Figure 1-8: Excerpts from main program of the physical copy example

/* build required format of pixel address */
dword pix_address (byte layer, word x, word y) {
 return (x << 16) + y + ((layer&0x0C) << 28) + ((layer&0x03) << 14);
}

Figure 1-9: Formatting logical address from Layer, X, Y
Function Description Page 87

MB87J2120, MB87P2020-A Hardware Manual
The functions above are not that important for understanding address calculation but used in examples giv-
en. They are shown for completeness only.

Most interesting is phy_address() function given in figure 1-12. Any information is queried from GDC reg-
isters. This is done for better understanding of internal arithmetic only. If some settings are known before
and fixed for the application, the algorithm can be simplified, which decreases execution time significantly.
It also shows the differences for Lavender and Jasmine.

/* layer description record lookup and bit per pixel (bpp) mapping */
byte bpp_lookup(byte layer) {
 switch (G0CSPC_CSC(layer)) {
 case 0: // 1bpp
 return 1;
 case 1: // 2bpp
 return 2;
 case 2: // 4bpp
 return 4;
 case 3: // 8bpp
 return 8;
 case 4: // RGB555
 case 5: // RGB565
 case 7: // YUV422
 case 0x0e: // YUV555
 case 0x0f: // YUV655
 return 16;
 default: // (6) RGB888, (8) YUV444
 return 32;
 }
}

Figure 1-10: Figuring out bpp value from layer setting

void DrawRect (dword c, byte l, word x, word y, word sx, word sy) {
 dword corners[2];
 corners[0] = pix_address(l, x, y);
 corners[1] = pix_address(l, x+sx-1, y+sy-1);
 GDC_CMD_DwRt(c);
 GDC_FIFO_INP((dword*) corners, 2, 0);
}

void DrawLine (dword c, byte l, word x, word y, word lx, word ly) {
 dword corners[2];
 corners[0] = pix_address(l, x, y);
 corners[1] = pix_address(l, x+lx-1, y+ly-1);
 GDC_CMD_DwLn(c);
 GDC_FIFO_INP((dword*) corners, 2, 0);
}

Figure 1-11: Easy to use drawing functions for the example
Page 88

SDRAM Controller
/* Build physical address from pixel address, function uses DRAM address */
/* window 0 only, pls ensure that DRAM mapping to MCU address is enabled */
dword phy_address (volatile byte layer, word x, word y) {
 byte bpp; /* Color depth lookup, 1/2/4/8/16/32 */
 byte ca; /* DRAM Column Address (8 bit) */
 word DomSzX; /* Layer Size X-Dimension (14 bit) */
 dword XBits; /* Number of Bits for one Line (19 bit) */
 word XRows; /* Number of Row blocks in X-Dimension (10 bit) */
 word ra; /* DRAM row address (without layer offset) */
 byte ba; /* DRAM bank address, Lavender only (2 bit) */
 dword PhySDC; /* Physical address SDRAM Controller view */
 dword PhyMCU; /* Physical address MCU view */
 dword LayOffs; /* Layer Offset */
 /* Determine Layer parameters and number of bits per line of pixels (x)*/
 /* Formula: XBits = DomSzX << Shift = DomSzX * bpp */
bpp = bpp_lookup(layer); /* layer color depth */
DomSzX = G0DSZ_X(layer); /* layer pixel width */
LayOffs = G0PHA(layer); /* layer start address */
XBits = DomSzX * bpp; /* layer bitsize width */

 /* Column address, Formula: CA = {Y[4:0], (X << Shift)[7:5]} */
 /* Y: 32 lines, X: 8 words each block */
ca = ((y & 0x1f) << 3) + (((x*bpp)&0xff)/32);

 switch (G0CLKPDR_ID) {
 case 1: /* ----------- ID: Jasmine, GDC-DRAM, single bank ------------ */
 /* Number of memory rows (grid of pixel blocks) in X-dimension */
 /* each partially used row has to be considered (add 1 if remainder) */
 /* Formula: XRows = XBits[18:8] + (XBits[7:0]? 1: 0) */

XRows = (XBits>>8) + ((XBits & 0xff)? 1: 0);
 /* DRAM row address relative to layer start address, each row has a */
 /* block size of 256 bit in X-dimension and 32 lines in Y-dimension */
 /* Formula: RA = Y[13:5] * XRows + (X << Shift)[18:8] */

ra = y/32*XRows + (x*bpp/256);
 /* combination of address bits: [19:10]ra, [9:2]ca, [1:0]byte */

PhySDC = LayOffs + (ra<<10) + (ca<<2);
 break;
 case 0: /* -------- ID: Lavender, GDC with external DRAM, 4 bank ----- */
 /* Formula: XRows = XBits[18:9] + (XBits[8:0]? 1: 0) */

XRows = (XBits>>9) + ((XBits & 0x1ff)? 1: 0);
 /* row block size is 512 bit in X-dim, 64 lines in Y-dim */
 /* Formula: RA = Y[13:6] * XRows + (X << Shift)[18:9] */

ra = y/64*XRows + (x*bpp/512);
 /* there exist 4 banks with same row address, thus each row block */
 /* consits of 4 bannk parts */
 /* Formula: BA = {Y[5], (X << Shift)[8]} */

ba = ((y>>5) & 0x1)*2 + (((x*bpp)>>8) & 0x1);
 /* combination of address: [22:12]ra, [11:10]ba, [9:2]ca, [1:0]byte */

PhySDC = LayOffs + (ra<<12) + (ba<<10) + (ca<<2);
 break;
 default:
 return -1; /* err: wrong chip ID */
 }
 /* add GDC0 offset (G0CMD is first GDC address) and ULB settings */
 /* such as MCU Window 0 offset and subtract SDRAM offset */
 /* check consistency if memory window is mapped and reachable */
 if (!G0SDFLAG_EN)
 return -2; /* err: SDRAM mapping not enabled */
 if (PhySDC < G0WNDSD0 || PhySDC >= G0WNDSD0+G0WNDSZ0)
 return -3; /* err: pixel address outside mapped Video RAM space */
 /* DRAM address GDC base address */
PhyMCU = (dword) (char *) PhySDC + (dword) (char *) &G0CMD

 /* MCU offset SDRAM offset */
+ (char *) G0WNDOF0 - (char *) G0WNDSD0;

 return PhyMCU;
}

Figure 1-12: Logical to physical address conversion routine
Function Description Page 89

MB87J2120, MB87P2020-A Hardware Manual
Last example is an intelligent ClearLayer function, which determines the start address of the next layer au-
tomatically. In that way layer size in Y-dimension is calculated before drawing a monochrome rectangle
filling the complete layer.

1.5.1.4 Address Calculation - Example with concrete {X,Y} Pixel

This example calculation is for the Lavender Chip. First calculation returns number of row-blocks in X-di-
mension. We need 20 (0x14) rows side by side for storing 640 pixels with color depth 16 bit.

XBits = DomSzX * bpp = 640 * 16 = 10240 = 0x2800

XRows = XBits[18:9] + (XBits[8:0]? 1: 0) = 10240/512 + 0 = 20 = 0x14

Mkctrl Tcl-GUI Name in gdc_reg.h Value

gdc_offset0 WNDOF0 0x40000

gdc_size0 WNDSZ0 0x80000

sdram_offset0 WNDSD0 0x0

Physical Address Layer 0 PHA(0) 0x20000

Domain Size X DSZ_X(0) 640

Color Space Code CSPC_CSC(0) RGB555 (16bpp)

void ClrLayer(dword color, byte layer) {
 dword R0[2];
 int j;
 byte ppw;
 dword next_layer_phy, PhysSz;
 word DomSzXWrd, DomSzXBlk, DomSzYLin, DomSzY;

 /* --------------- calculation of Domain Size Y --------------- */
 next_layer_phy = 0x100000; /* max memory size */
 /* search next Layer start address
 and calculate physical size from actual to next layer */
 for (j=0; j<16; j++) {
 if ((layer!=j) && (G0PHA(j)>G0PHA(layer)) && (next_layer_phy>G0PHA(j))) {
 next_layer_phy = G0PHA(j);
 }
 }
 /* calculate max Domain Size Y to fit in Physical Layer Size */
 PhysSz = next_layer_phy - G0PHA(layer);
 ppw = 32/bpp_lookup(layer); /* pixel per word */
 DomSzXWrd = G0DSZ_X(layer)/ppw + (G0DSZ_X(layer)%ppw? 1: 0);
 if (G0CLKPDR_ID == 1) { /* Jasmine 8x32 row blocks */
 DomSzXBlk = DomSzXWrd/8 + ((DomSzXWrd & 0x7)? 1: 0);
 DomSzYLin = PhysSz/4/DomSzXBlk/8;
 DomSzY = DomSzYLin - (DomSzYLin & 0x1f);
 }
 if (G0CLKPDR_ID == 0) { /* Lavender 16x64 row blocks */
 DomSzXBlk = DomSzXWrd/16 + ((DomSzXWrd & 0xf)? 1: 0);
 DomSzYLin = PhysSz/4/DomSzXBlk/16;
 DomSzY = DomSzYLin - (DomSzYLin & 0x3f);
 }
 /* ----------------- Clea layer function ------------------- */
 R0[0] = pix_address(layer, 0, 0);
 R0[1] = pix_address(layer, G0DSZ_X(layer)-1, DomSzY-1);
 GDC_CMD_DwRt(color);
 GDC_FIFO_INP(R0, 2, 0);
}

Figure 1-13: ClearLayer with automatic layer size detection
Page 90

SDRAM Controller
Assumed first pixel {0,0} address is searched for, physical address is Layer 0 start address directly.

PhyMap = GDC_CS_Area + WNDOF0 - WNDSD0 = 0x30000000 + 0x40000 - 0

PhyMap = 0x30040000

PhyAddr = PhyMap + PHA(0) = 0x30060000

Now for pixel position of Layer 0, X=115, Y= 250 physical address should be transformed.

RA = Y[13:6] * XRows + (X << Shift)[18:9]

RA = 250/64*20 + 115*16/512 = 3*20 + 1840/512 = 63 = 0x3f = 0b11 1111

BA = {Y[5], (X << Shift)[8]} = {bit 5 of 0xFA, bit 8 of 0x730} = 0b11

CA = {Y[4:0], (X << Shift)[7:5]} = {0b11010, 0b001} = 0b1101 0001

Con catenation of RA, BA and CA results in the physical SDRAM word address. Additional con catenation
of two bits 0b00 convert it to a byte address (x 4).

PhySDRAM = {RA, BA, CA, 0b00} = 0b11 1111. 11.11 0100 01.00 = 0x3FF44

Finally physical address offset for Layer 0 has to be added.

PhyAddr = 0x20000 + 0x3FF44 = 0x5FF44

This address can be used for IPA directly. For DPA GDC_CS_Area, WNDOF0 and WNDSD0 have to be
considered.

PhyAddrDPA = PhyMap + PhyAddr = 0x30040000 + 0x5FF44 = 0x3009FF44.
Function Description Page 91

MB87J2120, MB87P2020-A Hardware Manual
2 SDRAM Ports

From timing point of view critical is specially read accesses due to the fact, that delays of clock to the mem-
ory device and data back from memory to GDC have to be summarized relative to the internal rising clock
edge. Figure 2-3 shows when read data from SDRAM are valid after feeding back to GDC. There is the
additional restriction for keeping the setup and hold times of the data input registers, which reduces the valid
region of sampling time additionally. That’s why active clock edge of the input flip-flop has to be inside the
gray marked region. Best decision is the mid of this to have enough space for deviations. There are different
possibilities to compensate the part of total delay which is larger than one clock period. One is to insert a
delay buffer in the clock lines of the input registers, another is to sample data on falling clock edge of input
register. Additional to the input register clock delay there are to satisfy the hold time requirements of all
SDRAM input signals (outputs from GDC). Due to the fact that the input signal timing has to be relative to
the receiving clock at the SDRAM, this depends much on the delay of output clock buffer and clock wire
delay.

2.1 External SDRAM I-/O-Pads with configurable sampling
Time (Lavender)

Additional to the tri state control there is an special timing feature implemented at the SDRAM ports. Inside
the SDC there is a configurable hold time adjustment for the outputs and sampling time adjustment for the
data input.

The implemented solution uses configurable delays for each signal group (addresses and control signals, tri
state control, write data and read data). In this way it’s possible to compensate the influence of the board
layout in a comfortable way.

Registers for the SDRAM interface control the timing of the ports. Four different timings have to be satis-
fied:

• Hold time for SDRAM input pins address, command and DQM (tDCBTaout)

• Hold time for SDRAM data input pins (tDCBTdout)

SDRAM:
D

Core:

SDRAM:

D

Core:
CLK

CLK

tdCLK

tAC tOH

tdD tdD

tsD thD

Sampling area

Figure 2-1: SDRAM Interface Timing
Page 92

SDRAM Controller
• Sampling time for SDRAM data outputs (tDCBTdin)

• Delay for switching the tri state buffer enable signal (tDCBToe)

Figure 2-2 shows the schematic of the implemented SDRAM interface circuitry. Variable clock line delays

are implemented as buffer chains with multiplexed taps. The multiplexers respective the resulting delays
are controlled by a two-bit value for each signal group in the delay configuration byte. Under typical con-
ditions a programmable range from nearly 1ns up to 4ns is possible in steps of 1ns.

Recommended values for the interface setup are tDCBTaout=2ns, tDCBTdout=2ns, tDCBTdin=3ns and

tDCBToe=1ns.

2.2 Integrated SDRAM Implementation (Jasmine)

Jasmine has no interface to external SDRAM. Delay adjustment is not needed and not implemented for the
integrated solution.

D Q

D Q

D Q

Q D

D Q

din_delay

S
D

R
A

M

clock delay
configurable interface

registers
signal and external

wire delayclock driver

RAS
CAS
WE
DQM
A

DQ

addr

oe

wdata_sdram

rdata_sdram

CLKK

addr_delay

tristate_delay

dout_delay

CLK
ch

ip
 b

or
de

r

ras, cas, we, dqm, cke

Figure 2-2: Design of SDRAM Interface
SDRAM Ports Page 93

MB87J2120, MB87P2020-A Hardware Manual
3 Configuration

3.1 Register Summary

A summary of Initialization control registers is given in Table 3-1. Defaults are for 100 MHz operation fre-
quency. Address definitions for symbolic word addresses are in the file ’cbp_const.v’.

Table 3-1: Configuration Information of SDC

Symbol Bits Description Reset Value

SDWAIT_OPT [20] Interleave Opta: Execute Precharge and Acti-
vate during running Bursts of previous access.

1
unused Jasmine

SDWAIT_TRP [19:16] tRP: RAS Precharge Time (PRE -> ACTV,
default 2 wait states)

2

SDWAIT_TRRD [15:12] tRRDb: RAS to RAS Bank Active Delay Time
(ACTV -> ACTV, default 1 wait state)

1
unused Jasmine

SDWAIT_TRAS [11:8] tRAS: RAS Active Time (ACTV -> PRE,
default 5 wait states)

5

SDWAIT_TRCD [7:4] tRCD: RAS to CAS Delay Time (ACTV ->
READ|WRIT, default 2 wait states)

2

SDWAIT_TRW [3:0] tRW: Read to Write Recovery Time (READ ->
WRIT, default 7 wait states)
Wrong reset value, Jasmine requires 7/5, Lav-
ender 10/8, depending on used AAF or not.

3 !

SDINIT [15:0] Init Period: Power On Stabilization Time
(default 20000)

20000

SDRFSH [15:0] Refresh Period: Single Row Refresh Period
(default 1600)

1600

SDSEQRAM[]
[0:63] Lavender
[0:31] Jasmine

[13:0] Sequencer RAM [13:0], 64 words
[13:7]addr, [6:4]instr, [3:0]{ras,cas,we,ap}
(Jasmine has [12:7] address argument)

undefined

SDMODE [12:0] MRSc: SDRAM Mode Register
[9] burst write enable, [6:4] CL, [3] interleave
burst, [2:0] burst length (0:3)=1,2,4,8 / 7=full
(default 0x033)

0x0033
Lavender only

SDIF_TAO [7:6] tDCBTaoutd: Address output register clock
delay (controls also CKE, DQM, RAS, CAS,
WE outputs)

0
Lavender only

SDIF_TDO [5:4] tDCBTdout: Data output register clock delay 0
Lavender only

SDIF_TDI [3:2] tDCBTdin: Data input register clock delay 0
Lavender only

SDIF_TOE [1:0] tDCBToe: Output enable register clock delay 0
Lavender only
Page 94

SDRAM Controller
3.2 Core clock dependent Timing Configuration

3.2.1 General Setup

SDRAM access wait states and refresh periods are configurable to support a wide range of scalability in
matter of system performance and power consumption. Additional to the row refresh time out value the re-
fresh sequence in the micro program sequencer is adaptable for its dedicated core frequency.

The configuration tool generates optimized settings for a given core clock frequency to met best perform-
ance result. If a fixed setting should be used over a certain frequency range (i.e. if clock scaling is used with-
out the effort spending for re-configuration) the minimum frequency is required to calculate the refresh
period and the highest frequency should be used to calculate the values for the wait state timers. Thus refresh
condition and minimum access timing is always satisfied.

3.2.2 Refresh Configuration for integrated DRAM (Jasmine)

Setup of minimum refresh rate is based on core clock cycles. Thus the value for the refresh period has to be
configured for its dedicated core clock frequency. Additional to the core frequency, maximum junction tem-
perature has significant influence on refresh period.

• Tjmax = up to 100 degC : tREF = 16.4ms

• Tjmax = 101 to 110 degC : tREF = 8.2ms

• Tjmax = 111 to 125 degC : tREF = 4.1ms

Assumed Row Refresh duration for all 1024 rows is evenly distributed to refresh all rows within above spec-
ification, refresh timing of 16/8/4 us have to be set up. For automotive temperature range 4 us are required.

SDCFLAG_BUSY [0] CBPbusy: Set these flag before changing the
power on initialization period or the sequencer
RAM. Reset it after the access make changes
take affect.

0

SDCFLAG_DQMEN [1] DQM partial write featuree: Optimize byte/
8bpp and half word/16bpp access if set to 1.

0
Jasmine only

PHA[0:15] [22:12]
[19:10]

Layer Start Addresses: Row address offset for
start position of each layer. First bit positions
for Lavender, second for Jasmine. [22/19:0]
can be handled as byte address, but only shown
bits are stored.

undefined

DSZ_X[0:15] [29:16] Layer Widths: X component of Layer Size in
pixel

undefined

CSPC_CSC[0:15] [3:0] Color Depth Table: Color definition code for
evaluation of the number of bits per pixel (bpp)

undefined

a.Lavender only. Jasmine works with single bank.
b.Has no effect for Jasmine.
c.Fixed and not accessible for Jasmine.
d.DCBT interface timing adjustable for Lavender only.
e.Jasmine only.

Table 3-1: Configuration Information of SDC

Symbol Bits Description Reset Value
Configuration Page 95

MB87J2120, MB87P2020-A Hardware Manual
Page 96

B-4 Pixel Processor (PP)
Page 97

MB87J2120, MB87P2020-A Hardware Manual
Page 98

Pixel Processor
1 Functional Description

The Pixel Processor (PP) is a component of the Graphics Display Controller (GDC), which realizes the main
functions “drawing of geometrical functions” and “writing and reading single pixel” to and from Video
RAM. It is implemented in the GDC design between User Logic Bus Interface (ULB) and the SDRAM Con-
troller (SDC)/Anti Aliasing Filter (AAF), in reference to block diagram in GDC specification. The PP con-
sists of three separate devices (execution devices) and other submodules. The execution devices are the
Pixel Engine (PE) for drawing function, the Memory Access Unit (MAU) for single pixel access and the
Memory CoPy unit (MCP) for copying rectangular areas. The submodules are Control Interface, ULB In-
terface, the SDC Interface and the fifos for pixel addresses and pixel data.

More information about the internal module can be found in the corresponding chapters and sections.

1.1 Overview

1.1.1 PP Structure

The internal structure of PP is shown in figure 1-1. It consists of the execution devices (PP, MAU, MCP)
and the submodules Control interface, ULB interface and SDC interface. The ULB block in the figure 1-1

SDC bus

Command control
and Data

Pixel Processor

SDC/AAF

ULB

control bus

SDC-Inter-

ULB-InterfaceCTRL-Interface

PE MAU MCP

Fifo

AddrData

Figure 1-1: PP block diagram
Functional Description Page 99

MB87J2120, MB87P2020-A Hardware Manual
is only for understanding PP in context of GDC and represents the ULB functionality, such as command
control signals and data bus for reading and writing.

1.1.2 Function of submodules

The PE is a unit, which realizes the main function of PP, which are drawing of geometrical figures and writ-
ing compressed and uncompressed pictures into the Video RAM. The supported commands are:

• Drawing Commands

— DwLine (draw lines)

— DwRect (draw arectangular areas)

— DwPoly (draw a polygon)

• Bitmap Commands

— PutBM (write an uncompressed bitmap into Video RAM)

— PutCP (write an RLE compressed bitmap into Video RAM)

— PutTxtBM (write an uncompressed 1 bit pixel mask as a bitmap with a higher colour depth into
Video RAM)

— PutTxtCP (write an RLE compressed 1 bit pixel mask as a bitmap with a higher colour depth
into Video RAM).

The second unit in PP is the MAU. It realizes the single pixel access for reading and writing. Following
commands can be used by the programmer:

• Pixel Commands

— PutPixel (set one pixel on the display)

— PutPxFC (set one pixel with a fixed colour on the display)

— XChPixel (read-modify-write of a single pixel)

— GetPixel (read one pixel from the VideoRam)

— PutPxWd (write a 32bit data word with a number of pixels into the Video RAM; the number of
pixels depends on the colour depth of the target address).

The third execution device is the MCP. It gives a simple way for the programmer to copy rectangular areas
from the source layer to the target layer. The only command, which can be used is:

• Memory to Memory Commands

— MemCP (copy rectangular area from one layer to another)

The SDCI is a component, which manages the access to the SDC. The SDCI collects pixel adresses and data
to packages, which should be transferred to the Video RAM with one request. The addresses and data are
collected in the fifos (address and data fifo), every one of them has a size of 32bit*(64+2) words.

The Control interface is connected to the internal control bus system of the GDC, which allows the pro-
grammer to have access to the configuration registers of all sub modules or macros. All configuration reg-
isters of the PP are connected to the control bus system.
Page 100

Pixel Processor
1.2 Configuration Registers

The following table 1-1 shows the configuration registers of PP and their initial values.

Table 1-1: register list of the PP

Address Name Width Bits Comment Initial

1240h
1244h
1248h
124Ch
1250h
1254h
1258h
125Ch
1260h
1264h
1268h
126Ch
1270h
1274h
1278h
127Ch

CSPC_CSC[0:15] 4 [3:0] color space code (to calculate color
depth) for layer[0:15]
color definition of layer 0
color definition of layer 1
color definition of layer 2
color definition of layer 3
color definition of layer 4
color definition of layer 5
color definition of layer 6
color definition of layer 7
color definition of layer 8
color definition of layer 9
color definition of layer 10
color definition of layer 11
color definition of layer 12
color definition of layer 13
color definition of layer 14
color definition of layer 15

0h

4100h BGCOL_EN

BGCOL_COLa
1
24

[24]
[23:0]

enable background color
background color data (depends on
colour depth)
background pixel colour data is
used by commands PutTxtBM and
PutTxtCP

0h

4104h FGCOL 24 [23:0] foreground colour data (depends
on colour depth)

0h

4108h IGNORCOL_EN
IGNORCOL_COL

1
24

[24]
[23:0]

enable ignore colour
ignored colour data (depends on
colour depth)
ignored pixel colour data is used
by commands PutBM and PutCP

0h

410Ch LINECOL 24 [23:0] line colour data (depends on colour
depth)
line pixel colour data is used by
command DwLine

0h

4110h PIXCOL 24 [23:0] pixel colour data (depends on col-
our depth)
pixel colour data is used by com-
mand PutPxFC

0h

4114h PLCOL 24 [23:0] polygon colour data (depends on
colour depth)
line pixel colour data is used by
command DwPoly

0h
Functional Description Page 101

MB87J2120, MB87P2020-A Hardware Manual
4118h RECTCOL 24 [23:0] rectangle colour data (depends on
colour depth)
line pixel colour data is used by
command DwRect

0h

411Ch XYMAX_XMAX
XYMAX_YMAX

14
14

[29:16]
[13:0]

endpoint X-dimension
endpoint Y-dimension
bitmap shape description (stop
address incrementation) for the
commands PutBM, PutCP,
PutTxtBM and PutTxtCP

0h

4120h XYMIN_XMIN
XYMIN_YMIN

14
14

[29:16]
[13:0]

startpoint X-dimension
startpoint Y-dimension
bitmap shape description (start
address incrementation) for the
commands PutBM, PutCP,
PutTxtBM and PutTxtCP

0h

4124h PPCMD_ULAY
PPCMD_LAY
PPCMD_EN
PPCMD_DIR
PPCMD_MIR

1
4
1
1
2

[28]
[27:24]
[16]
[8]
[1:0]

use target layer register
target layer
enable anti aliasing filter
bitmap direction
bitmap mirror

Target layer information is used by
PutBM, PutCP, PutTxtBM,
PutTxtCP any time. It is used by
DwLine, DwRect, DwPoly if
ULAY enabled.
Direction is relevant for PutBM,
PutCP, PutTxtBM and PutTxtCP
(0=horizontal, 1=vertical).

Mirrorb for PutBM, PutCP,
PutTxtBM, PutTxtCP (0h=with-
out mirroring, 1h=X-axis, 2h=Y-
axis, 3h=X- and Y-axis).

0h

4128 SDCPRIO 3 [2:0] PP priority for SDC-request 0h

412Ch REQCNT 8 [7:0] maximum number of data words,
which should be tranferred in one
Video RAM access cycle (packet

size).c

word count = REQCNT+1

0h

4130h READINIT 1 [0] read config register, double buffer
read access behavior:
0=internal buffered register,

1=config register.d

0h

a. Note! All colour data in the registers is right aligned (lsb) and depends on the colour depth/resolution.

b. The mirror funcionality means doubling at the limitation lines, which are defined by XMAX or YMAX (see
figure 1-2).

Table 1-1: register list of the PP

Address Name Width Bits Comment Initial
Page 102

Pixel Processor
1.3 Special Command Options

1.3.1 Bitmap Mirror

Bitmap mirror option is for enhancement of symmetric objects. Original object is drawn in any case. It is
possible in one or both X- and Y-direction. Thus only the half or the quarter of an bitmap needs to be trans-
ferred. Mirroring is usable for bitmap commands PutBM, PutCP, PutTxtBM and PutTxtCP. Mirroring axis
are defined by the end point coordinates.

1.3.2 Bitmap Direction

Bitmap direction option swaps X- and Y- coordinates relative to the start point. Original bitmap is not
drawn. It could be understood as flipping the object at an axis through the start point with an angle of 45
degree. If PPCMD_DIR = 1 the new end point calculates to

Xmax’ = Xmin + Ymax - Ymin

Ymax’ = Ymin + Xmax - Xmin

c. REQCNT is important for bandwith considerations. Large values give fast PP data throughput but increasing
risk of shortage for real-time devices GPU/VIC. If REQCNT is different from 0, data can remain in PP
FIFOs (not sufficient amount for packetized transfer). The remaining data is flushed with start of the next
command, i.e. if the drawing is finished with a NoOp command.

d. To avoid consistency problems during read-modify-write access it is recommended to set READINIT behav-
ior to ’1’. Thus read and write accesses use the same register. The copy procedure from configuration register
to the internal buffered register is controlled by the pixel processor. The internal value is fixed during running
commands.

XMIN XMAX

YMIN

YMAX

direction

mirror in x-direction

mirror in x-direction
and y-directionmirror in y-direction

Figure 1-2: Mirroring Function

Ymax’

Ymax

Ymin

Xmin XmaxXmax’

PPCMD_DIR = 0

PPCMD_DIR = 1

Figure 1-3: Direction Option
Functional Description Page 103

MB87J2120, MB87P2020-A Hardware Manual
2 Format Definitions

This chapter describes the colour and data formats of all PP specific interfaces, such as ULB interface or
SDC interface. You can also find explanation of all used symbols.

2.1 Legend of symbols

The table describes the mnemonics of data formats.

Table 2-1: Mnemonics and Symbols

Mnemonic & Symbols Description

[...] data double word (32bit):

• [single colour data]: one pixel

• [colour data]: more than one pixel in one word (uncompressed)

• [coded data]: RLE compressed pixel data

• [colour enable data]: 1bpp pixel mask (uncompressed)

• [coded colour enable data]: RLE compressed 1bpp pixel mask

<...> data byte (8bit):

[L, X, Y] or

[Lhigh, X, Llow, Y]

pixel address (32bit):

{...} • {X, Y}: pixel coordinates (2*14bit)

• {Lhigh, Llow}: layer number (2*2bit)

• {reg}: value of register, e.g. RCOLOR

31 23 15 7 0

byte0 byte1 byte2 byte3

7 0

byte

31 29 15 13 0

layer number

x-coordinate y-coordinate
3 2 1 0
Page 104

Pixel Processor
2.2 Data Formats at ULB Interface

Color data at ULB interface (IFIFO/OFIFO) and for configuration registers is LSB aligned. Only data for
PutPxWd is an exceptional case, it delivers data in physical form as stored in Video RAM.

The ULB delivers data in three formats:

— pixel addresses

— single pixel data: all single colour data is rigth aligned in the data word; the number of used bits
depends on the colour depth.

— pixel data stream (compressed or decompressed):

(...) data package:
It consists of one or more 32bit data words, which contain all necessary in-
formation for the current command.
e.g. ([X, Y], [Lhigh, X, Llow, Y])
This is the data (start point, end point and layer) for the command DwLine,
two data words are used.

Table 2-2: Symbols of RLE Compression

Resolution Mode Command Byte Colour Bytes

bpp1 compressed <1NNN NNNC> colour information in command byte (bit[0])

uncompressed <0NNN NNNN> (NNNN NNN+1 mod 8) bytes with colour data
<CCCC CCCC>
(NNNNNNN+1 rem 8) > 0: last byte may be
incomplete; e.g. 4: <CCCC xxxxx>

bpp2 compressed <1NNN NNNN> 1 byte incomplete <CCxx xxxx>

uncompressed <0NNN NNNN> (NNNNNNN+1 mod 4) bytes with colour data
<CCCC CCCC>
(NNNNNNN+1 rem 4) > 0: last byte may be
incomplete; e.g. 2: <CCCC xxxxx>

bpp4 compressed <1NNN NNNN> 1 byte incomplete <CCCC xxxx>

uncompressed <0NNN NNNN> (NNNNNNN+1 mod 2) bytes with colour data
<CCCC CCCC>
(NNNNNNN+1 rem 2) > 0: last byte may be
incomplete; e.g. 1: <CCCC xxxxx>

bpp8 compressed <1NNN NNNN> 1 colour byte <CCCC CCCC>

uncompressed <0NNN NNNN> (NNNNNNN + 1) bytes with colour data
<CCCC CCCC>

RGB555,
RGB565

compressed <1NNN NNNN> 2 bytes colour data (<CCCC CCCC>, <CCCC
CCCC>)

uncompressed <0NNN NNNN> (NNNNNNN + 1)*2 bytes with colour data
(<CCCC CCCC>, <CCCC CCCC>)

Table 2-1: Mnemonics and Symbols

Mnemonic & Symbols Description
Format Definitions Page 105

MB87J2120, MB87P2020-A Hardware Manual
2.3 Data Formats for Video RAM / SDC Interface

At the SDC interface all colour formats are possible and supported. Color data is transferred and stored in
MSB aligned form. This is opposite to the IFIFO/OFIFO data at ULB interface.

RGB888 compressed <1NNN NNNN> 3 bytes colour data (<CCCC CCCC>, <CCCC
CCCC>, <CCCC CCCC>)

uncompressed <0NNN NNNN> (NNNNNNN + 1)*3 bytes with colour data
(<CCCC CCCC>, <CCCC CCCC>, <CCCC
CCCC>)

Table 2-2: Symbols of RLE Compression

Resolution Mode Command Byte Colour Bytes

red1red0 green0 blue0
31 23 15 7 0

byte3 byte2 byte1 byte0

green1 blue1

red4 green4 blue4

red2 green2

blue2 red3 green3 blue4

red5...

PutBM: uncompressed continuous data stream (RGB888)->[colour data]

blue0command = 84h red0 green0
31 23 15 7 0

byte3 byte2 byte1 byte0

command = 02h red1

green3 blue3 command = 8Fh

green1 blue1

red2 green2 blue2 red3

red4 ...

PutCP: compressed continuous data stream (RGB888) ->[coded data]

Figure 2-1: Examples of continuous data stream (ULB/MCU side)
Page 106

Pixel Processor
All pixel data in block (single pixel) or burst mode are left aligned. In burst mode more than one pixel data
can be in one data word.

Table 2-3: Color formats on the SDC interface

colour Format Comment

RGB888 true colour format

• single pixel ([single colour data])

• pixel burst ([colour data])

RGB565 high colour format

• single pixel ([single colour data])

• pixel burst ([colour data], one data word of the burst and maximum of
two pixel per word)

RGB555 high colour format

• single pixel ([single colour data])

• pixel burst ([colour data], one data word of the burst and maximum of
two pixel per word)

31 23 15 7 0

red green blue dummy

31 23 15 7 0

red green blue dummy

31 20 15 7 0

red green blue dummy

26

31 20 15 7 0

red green blue

26

red green blue

first pixel second pixel

31 20 15 7 0

red green blue dummy

26 21

dummy

31 20 15 7 0

red green blue

26 21

dummy

red green blue

first pixel second pixel
dummy
Format Definitions Page 107

MB87J2120, MB87P2020-A Hardware Manual
bpp8, bpp4, bpp2,
bpp1

colour index format
These colour formats represents index information for the CLUT (Colour
Lock-up Table) and not colour information in RGB format. The maximum of
numbers in one word depends on the colour resolution (bits per pixel).

• single pixel ([single colour data])

• pixel burst ([colour data])

Table 2-3: Color formats on the SDC interface

colour Format Comment

31 23 15 7 0

dummy

colour index byte, depends on colour resolu-
tion; the left aligned bits are used

31 23 15 7 0

31-(bpp-1)
first pixel
Page 108

B-5 Antialiasing Filter (AAF)
Page 109

MB87J2120, MB87P2020-A Hardware Manual
Page 110

AAF Antialiasing Filter
1 Functional Description

The Anti Aliasing Filter (AAF) is a component of the Graphics Display Controller (GDC), which realizes
the anti aliasing filter function for some pixel commands. It is implemented in the GDC design between the
Pixel Processor (PP) and the SDRAM Controller (SDC), in reference to block diagram in GDC Specifica-
tion. The AAF processes data on the fly which should be stored in the Video RAM. Only for true or high
colour resolution pixel data an applicable result could be expected. Averaging of indexed colours may lead
to unexpected effects.

1.1 AAF Overview

1.1.1 Top Level Structure

The internal structure of AAF is shown in Figure 1-1. It consists of a bypass multiplexor, a control block,
the antialiasing unit (AAU) itself and two compatible interfaces to the SDC and PP modules.

The bypass is needed to switch the AAF in a transparent (disabled) mode. If AAU is disabled and the bypass
is active the clock supply of the whole AAF module can be switched off for power saving purposes. Addi-
tional if AAF is not used the SDRAM timing for read-to-write recovery can be made faster. The bypass

SDC bus

SDC bus

AAF control signals

AAF_EN

Anti Aliasing Filter

Figure 1-1: AAF Block Diagram

SDC-Interface (SDC side)

SDC

Pixel ProcessorULB

SDC-Interface (PP side)

all signals of SDC bus, such as
REQ, MCTRL, ADDR ...

AAF enable signal

register set data, such as THRESH-
OLD or OPTI_EN ...

control bus

CTRL-Interface

Anti Aliasing Unit
Functional Description Page 111

MB87J2120, MB87P2020-A Hardware Manual
mode guarantees a direct connection between PP an SDC without pixel data and pixel address manipulation
by AAF (AAU is off).

The control block realizes reading or writing of configuration registers. The anti aliasing unit manipulates
the pixel data and manages the access to PP and SDC.

1.1.2 AAU Function

The main function of the anti aliasing algorithm is to reduce the staircasing effect. This effect is a result of
projecting (drawing) objects onto the physical pixel resolution of the display. To get a higher image quality
the implemented super sampling algorithm could be used to avoid stair effects on the edges of objects, e.g.
lines or circles. In this case the anti aliasing is done on the fly, that means that during the drawing of objects
the object itself is antialiased with the current background. This results in smoother edges by averaging fore-
ground and background color information.

1.1.2.1 Super Sampling

The objects are drawn at a higher resolution, which per definition leads to less staircasing. This virtual res-
olution is doubled in X and Y direction for 2x2 super sampling or four times in both dimensions for 4x4
super sampling. The image is then converted to the normal resolution by averageing the sub pixels to a new
resulting pixel, which is stored in video RAM. Foreground pixels are generated by PixelProcessor or written
through its interface. Background pixels are read from memory.

1.1.2.2 Drawing Resolution

The super sampling method requires doubled or four times the drawing resolution. If antialiasing is enabled,
coordinates have to be doubled or multiplied by four. The Pixel Processor did not enhance the resolution
automatically. It is the task of the application to work on the finer resolution of the sub-pixel grid.

A side-effect of the high er resolution is that the amount of generated pixel data is four or sixteen times high-
er compared to the original picture without antialiasing. Additional each write access converts to a read-
modify-write access du to the fact that background information is required. This has to be considered in
terms of drawing performance. To reduce the effect of the high number of read-modify-write (RMW) ac-
cesses to the same pixel coordinate write-back optimization is implemented for subsequent writes to the
same pixel address. It is recommended to switch on optimization by setting OPTI_EN to ’1’.

1.1.2.3 Data and Address Processing

The algorithm is based on single pixel processing due to sequential averaging in video memory. Therefore
PP is forced to block mode, each pixel data requires its own address information. Packet data formats are
not supported (e.g. PutPxWd). Incoming PP requests of variable block size were divided into single RMW
accesses to the SDC. Thats why some restrictions apply during AAF usage, which will be discussed in sec-
tion 1.3.1.

Figure 1-2: Antialiasing with super sampling. From left to right: Without antialiasing, doubled resolu-
tion with sub-pixels, averaging of sub-pixels.
Page 112

AAF Antialiasing Filter
Formulas for sequential averaging of foreground and background data are shown in table 1-1. Pixel data
from PP is fg, background from memory is bg and fg’ is the new resulting pixel, which is written to video
memory. The low precision of the 2x2 super sampling can be compensated by adaptive coefficient selec-
tion, controlled by color difference thresholds. The value of the thresholds depends on human eye sensitiv-

ity on chrominance contrast and differs for various types of graphics. Right setup values could be evaluated
empirically.

Addresses of pixel coordinates are divided by 2 in 2x2 super sampling mode for each X/Y dimension. In
4x4 super sampling mode pixel address of resulting pixel is divided by 4. Thus 4 or 16 sub-pixels of the
generated high-resolution object are mapped to the same pixel address in video memory. The sequential av-
eraging is the result of the multiple applied formula on the same memory address.

1.2 Configuration Registers

The following table shows the configuration registers of AAF and their initial values.

Note!

The number of the used bits of threshold registers depends on colour depth. That meens:

• RGB888: for all colour channels all bits of threshold registers are used by AAF algorithm

• RGB565: for the red and blue colour channel only the bit[7:3] are used for calculation and for the
green channel the bit[7:2]

Table 1-1: Formulas for sequential averaging

Formula Condition

fg’ = (2 fg + 2 bg) / 4 2x2 super sampling size. If difference between fg and bg color is below
threshold. Threshold1 applies if fg<bg, otherwise threshold2.

fg’ = (1.5 fg + 3 bg) / 4 2x2 super sampling size. If difference between fg and bg color is
greater or equal threshold. Threshold1 applies if fg<bg, otherwise
threshold2.

fg’ = (1.5 fg + 15 bg) / 16 4x4 super sampling size. No threshold based coefficient adaption
required.

Table 1-2: AAF related Registers

Address Name Width Comment Init. Value

4124h PPCMD_EN 1 bit[16] - AAF_EN: enable anti aliasing filter
(high active)

0h

4500h AATR_TH2
AATR_TH1

16 bit[15:8] - threshold2
bit[7:0] -threshold1
for colour channel red

0h
FFh

4504h AATG_TH2
AATG_TH1

16 bit[15:8] - threshold2
bit[7:0] - threshold1
for colour channel green

0h
FFh

4508h AATB_TH2
AATB_TH1

16 bit[15:8] - threshold2
bit[7:0] - threshold1
for colour channel blue

0h
FFh

450Ch AAOE_WBO
AAOE_BX4

1 bit[0] - OPTI_EN: write back optimization
bit[1] - Operator size (0=2x2, 1=4x4)

0h
Functional Description Page 113

MB87J2120, MB87P2020-A Hardware Manual
• RGB555: for all colour channels only the bit]7:3] are used for calculation

1.3 Application Notes

1.3.1 Restrictions due to Usage of AAF

The AAF does not support all modes of the PP and SDC functionality. For the using of AAF note there are
some restrictions, which are descibed in this section.

Table 1-3 shows all pixel processor commands, which can be used or are not allowed to be used or make
no sense commonly used with the AAF.

Table 1-3: Support of PP commands

Command Access Mode Comment

DwLine, DwPoly,
DwRect, PutBM,
PutCP, PutTxtBm,
PutTxtCP, PutTxtCP,
PutPixel, PutPxFC

write (block mode) pixel address manipulation (sub pixel access a) and
pixel data manipulation

a. Sub pixel access means that the pixel processor wants to read or write into the sub pixel space, which have the
double resolution in horizontal and vertical direction (one real pixel on the display/layer have four sub pixel).

XChPixel read-modify-write
(block mode)

pixel address manipulation (sub pixel access), no pixel
data manipulation for read data and pixel data manip-
ulation for write data
Note!
The RDATA information is stored in the ULB output
Fifo.
Do not use this command with enabled AAF!

GetPixel only read
(block mode)

no pixel address manipulation (real pixel access b) and
no pixel data manipulation;
Note!
The RDATA information is stored in the ULB output
Fifo.
Do not use this command wih enabled AAF!

b. Real pixel access means that the pixel processor wants to read or write a real pixel (a physical pixel) of a the
display/layer.

MemCP sequential read and
write (block mode)

read access: like GetPixel
write access: like PutPixel
Note!
Make sure that the source area does not overlap with
the target area!

PutPxWd write (burst mode) Prohibition! (did not work)
Page 114

AAF Antialiasing Filter
1.3.2 Supported Colour Formats

The AAF supports only pixel data manipulation for true or high colour resolutions like RGB888, RGB565
and RGB555.

1.3.3 Related SDC Configuration

The information in this section is very important for the programmer, because wrong timing at the SDC can
hang up the AAF. The ‘read to write recovery time’ (tRW) in the SDC should be set to the minimum value
of 10 for Lavender or 7 for Jasmine. This timing parameter selects a delay between read and write access
to the SDRAM and thus it influences the difference between read data and write data appear on the internal

Table 1-4: supported colour formats

colour Format Comment

RGB888 true colour format (single pixel a)

a. A single pixel means one pixel in a 32bit data word at the SDC bus (SDC format in block mode; pixel data is
MSB aligned).

RGB565 high colour format (single pixel)

RGB555 high colour format (single pixel)

bpp8, bpp4, bpp2,
bpp1

colour index format (single pixel)

This colour formats can not be correctly manipulated by the AAF, because the
pixel data represents index information for the CLUT (Colour Lock-up Table)
and not colour information in RGB format.
If the AAF is used and one of this colour formats should be transferred to the
SDC, the AAF calculates a new colour index, which is stored in the SDC.
The visible result at the display may not be the intended one.
Note!
To avoid such problems, the programmer should disable the AAF for this col-
our format access.

31 23 15 7 0

red green blue dummy

31 20 15 7 0

red green blue dummy

26

31 20 15 7 0

red green blue dummy

26 21

dummy

31 23 15 7 0

dummy

colour index byte, depend on colourcolour
resolution the left aligned bits are used
Functional Description Page 115

MB87J2120, MB87P2020-A Hardware Manual
bus connected to the AAF. AAF requires at minimum two extra clock cycles which is needed for internal
data processing.

Description of events at clock cycles from figure 1-3:

1. At this edge the AAF takes the pixel data of the old pixel from RDATA bus (SDC side).

2. At this event the AAF sets the result at the WDATA bus.

3. SDC takes the pixel data of new pixel from the WDATA bus.

Note!

The delay between RVALID (1.) and WVALID (2.) can be bigger, but not smaller!

To gain more system performance, tRW is possible to reduce to 8 (Lavender) or 5(Jasmine) if Antialiasing
Filter is bypassed. No other module has any requirements to this read-write timing. The minimum values of
8/5 guarantee that there will be no bus conflict at the SDRAM interface itself. The setting of tRW is inde-
pendent from core clock frequency.

There is no requiremnt to reduce tRW setting to its minimum. It is only an aspect of performance tuniung.
Additional it did not that much influence system performance, it is save to setup a value of 10 or 7 all the
time.

Table 1-5: Minimum settings for tRW

Jasmine Lavender

AAF on 7 10

AAF off 5 8

2 clock cycles

CLKK

RVALID

RDATA(31:0)

WVALID

WDATA(31:0)

3 clock cycles

1. 2. 3.

set by tRW register
(minimum 10/7)

Figure 1-3: Timing for read-modify-write on SDC bus for AAF access
Page 116

B-6 Direct and Indirect Physical
Memory Access Unit (DIPA)
Page 117

MB87J2120, MB87P2020-A Hardware Manual
Page 118

DIPA Direct/Indirect Physical Access
1 Overview

The purpose of the DIPA device is to provide video memory (frame buffer) access methods for the MCU
without the need of the Pixel Processor inside the graphic display controller (GDC) to be used. This is per-
formed by using physical SDRAM write and read access. The data words in video memory can be accessed
with raw physical addresses.

The function divides into two blocks, DPA (Direct Physical memory Access) and IPA (Indirect Physical
memory Access).

DPA is for direct memory mapped video RAM access, address range of video RAM has a certain offset
regarding GDC internal mapping and GDC Chip Select address mapping of MCU address space. Data trans-
fer over DPA are single word, half word or byte accesses. Each single access has to be arbitrated with com-
peting GDC devices GPU, VIC and PP by the SDRAM Controller (SDC), therefore this method of direct
frame buffer access is relative slow.

IPA offers also the possibility to have physical access to the video RAM. Main advantage is that the transfer
is executed in a buffered manner over the input and output FIFOs. Addressing is done without any address
offset calculation required. Physical address is transferred as parameter from 0 to the upper bounds of video
memory size. Data blocks can be transferred with a given block size and start address. The slow-down due

IPA Prio

DPA Prio

IFMAX

IFMIN

OFMAX

OFMIN

Config

SDRAM Controller

IFIFO OFIFO

SDC interface

IPA DPA

DIPA

ULB

Figure 1-1: DIPA Block Diagram within GDC environment
Overview Page 119

MB87J2120, MB87P2020-A Hardware Manual
to the needed SDC arbitration time has much less influence when multiple data words are transferred as
packet at once. Additional performance increase is reached because of FIFO buffering. IPA is used if the
following commands are executed:

• PutPA, write address and data field of variable size via Input FIFO

• GetPA (n), read n data words via Output FIFO

The SDC interface multiplexes between IPA and DPA devices and controls its concurrence. DPA has prec-
edence over IPA.

There is no necessity for physical access of video data only. Not used video memory, i.e. if the memory is
not assigned in the Layer Description Record (LDR, see GDC registers), can be used for general purposes.
If pixel data should be accessed the logical to physical address mapping has to be considered (see SDRAM
Controller Specification). For non-image data addressing can be in a linear way.
Page 120

DIPA Direct/Indirect Physical Access
2 Configuration Registers

2.1 Register List

Configuration of DIPA internal registers is needed for SDRAM arbitration priority information and to con-
trol IPAs FIFO buffering. This influences system performance and bandwidth balance only.

Initial values (reset-state) for IPA configuration are not default values an some of them restricted for oper-
ation. An configuration of block sizes is required before IPA operation is possible.

2.2 Recommended Settings

Figure 2-1 shows the relationship between IPA settings for input or output FIFO and the current FIFO load.
If the load is smaller than IFMIN or OFMIN no data transfer is performed. In the load range between
IFMIN/OFMIN and IFMAX/OFMAX a single transfer with at least IFMIN/OFMIN data words is triggered.
Above IFMAX/OFMAX FIFO load the transfer is packetized into packages of IFMAX/OFMAX size.

The configuration with respect to system behaviour depends on the bandwidth reserve for video RAM ac-
cess (transfer rate and core clock dependent). Normally GPU and VIC have highest access arbitration pri-
ority due to the fact that this are real-time applications and its bandwidth violations would lead to data loss
(drop of display or video data may be the result of wrong configuration).

Table 2-1: DIPA performance adjustment registers

Register Address Bits Function Initial

DIPACTRL_PDPA 0x4200 [18:16] DPA arbitration priority [0...7] 0x0

DIPACTRL_PIPA 0x4200 [2:0] IPA arbitration priority [0...7] 0x0

DIPAIF_IFMIN 0x4204 [6:0] Minimum block size for data transfer to the
video RAM (>= 2)

0x02

DIPAIF_IFMAX 0x4204 [22:16] Maximum block size for data transfer to the
video RAM (>= IPAIF_MIN)

0x02

DIPAOF_OFMIN 0x4208 [6:0] Minimum block size for data transfer from
the video RAM (>= 1)

0x01

DIPAOF_OFMAX 0x4208 [22:16] Maximum block size for data transfer to the
video RAM (>= IPAOF_MIN)

0x01

0

IFMIN/OFMIN

FIFOSIZE

IFMAX/OFMAX

no transfer

transfer possible

IFMAX/OFMAX size
packetized transfer with

Figure 2-1: DIPA settings for input and output FIFO
Configuration Registers Page 121

MB87J2120, MB87P2020-A Hardware Manual
DPA with its single word accesses has normally not that important influence on system performance. The
granted access duration is very short. If the bandwidth requirements are not close to the edge, highest pri-
ority should be not problematic if assigned (i.e. DPA=7, GPU=6, VIC=5). If considered that bandwidth is
very critical for GPU or VIC a setting of GPU =7, VIC=6 and DPA=5 should be assigned.

IPA can lock the video RAM interface relative long time, even if a large maximum block size is specified.
Therefore a very low priority should be assigned to IPA, at least lower than the real-time devices GPU and
VIC. A low value did not necessarily reduce IPA performance. The data stream is buffered through the input
and output FIFOs. Only reaction time increases slightly for low priority requests. If bandwidth violations
occur for GPU or VIC at IPA usage at lowest priority, the maximum block transfer size should be reduced.
It may be possible that GPU FIFO under-run or VIC FIFO overflow occurs while IPA locks the RAM access
with large packet transfers. Just at the usage of high resolution displays with large video bandwidth require-
ment this aspect should be considered.

Now some considerations for minimum block size settings. In general the minimum values must be less or
equal to the maximum settings. These values are for controlling efficiency of IPA requests to the SDC. If
the amount of data in the FIFOs is lower the given value, no action is initiated. The IPA device waits for a
required, worthwhile packet size. The greater the packet size, the higher the throughput, but additional high-
er risk of GPU or VIC interruption due to video memory locking during longer transfer times.

2.3 Related Settings and Informations

From application point of view the setup of appropriate control information to the DIPA configuration reg-
isters is not sufficient for accessing video memory in physical address format. Additional settings are re-
quired for a complete configuration. Detailed information are in ULB and SDC documentation.

ULB handles the mapping of the video RAM address used for DPA (memory mapped). Other commands
use the In- and Output FIFOs too. Additional command processing is controlled by ULB.

SDC did the logical to physical address conversion. If picture data should be accessed, SDC calculates
based on Layer Description Record (LDR) information the physical video memory address. Layer start off-
sets and bit size of pixel data influences logical to physical address mapping. This knowledge is necessary
to locate a given picture coordinate {Layer, X, Y} at its dedicated physical memory position.

If IPA is used in DMA mode both control mechanisms for DMA buffer sizes (DMA demand mode, see ULB
description) and for IPA FIFO buffering should be considered to stay not in conflict with each other. Oth-
erwise this could lead to deadlock situations in data flow.
Page 122

B-7 Video Interface Controller (VIC)
Page 123

MB87J2120, MB87P2020-A Hardware Manual
Page 124

Video Interface Controller
1 Introduction

1.1 Video Interface Controller functions and features

The purpose of the Video Interface Controller (VIC) is to receive video data from an external video con-
troller. The VIC operates only in synchronous mode, which means that the VIC clock should be provided
by external video pixel decoder. Asynchronous modes where no clock is needed are not supported.

An external video controller converts an analog video signal into a digital component stream. Some of the
controllers have additional features like video resizing, picture quality control (contrast, brightness etc.),
anti-aliasing-filtering and color format conversion (YUV to RGB).

VIC reads digital video signals from video controller output, assorts data and writes them into graphic con-
troller’s Video memory (SDRAM) area reserved for external video data.

Due to a new bus shuffler1, byteswap and clock invert functions the video interface gets a wider range of
flexibility.

The following points list all VIC features briefly:

• data port with 8 bit (Port A only) or 16 bit (Port A and Port B)

• different color formats: RGB555, RGB565, RGB888, YUV444, YUV6552, YUV5552, YUV422

• single clock and double clock mode (Port A only)

• different input timing (Videoscaler-Mode and CCIR) with a wide range of variations due to bus shuffler
(Jasmine only)

• programmable polarity for control signals

• alpha key mapping with programmable color

• windowing function (Jasmine only)

• progressive and interleaced input

• skip function to reduce data rate

• frame management unit to synchronize video input and displayed video output

• programmable layer addresses

• picture start flag in flag register (Jasmine only)

1.2 Video data handling

VIC reads real-time video data from a special display controller interface and writes them into Video Mem-
ory (SDRAM) with help of SDRAM controller (SDC).

As video target a normal layer can be used. Within the display controller no special marking for video layers
is necessary, it is treated as all other layer which contain drawings and bitmaps.

In order to synchronize input video frame rate with display frame rate VIC contains a frame synchronization
controller that works together with GPU. For synchronization a two layer and a three layer mode is availa-
ble. In GPU only one of the used layers needs to be set up. Which of these two or three layers is actually
used is decided by frame synchronization controller in real time.

In two layer synchronization mode one write and one read layer is used for synchronization and the frame
controller compares vertical read/write positions for actual layer.
In three layer synchronization mode only a complete written layer is displayed by GPU. It depends on the
frame rate difference between video input and display output which layer is displayed how often. If GPU is

1. This shuffler is only available for Jasmine. Lavender does not contain this feature.

2. Jasmine only; see chapter 2.2
Introduction Page 125

MB87J2120, MB87P2020-A Hardware Manual
much faster than VIC it can happen that one layer is displayed more than one time. On the other hand, if
VIC is much faster than GPU the display of some layers may be skipped. In any case no artefacts within
one layer are visible.
To decrease memory size needed for video input all needed layers for synchronization (two or three) may
be set to one layer number. In this case VIC and GPU uses only one layer. Of course no frame rate synchro-
nization is done and artefacts may be visible on display within video.

As an additional feature VIC supports a so called ’alpha channel’. Via a special pin (VSC_ALPHA) an ex-
ternal video scaler signals the VIC not to take the pixel color for the current coordinate but a special color
previously defined in a special register (VICALPHA). This color is written to Video memory instead of vid-
eo color.
Together with other features of display controller such as transparent color and blinking inside GPU various
effects can be achieved.

Jasmine contains a window function where a rectangular area (window) can be defined which treats as clip-
ping rectangle for video input data. Only data within this window are written to Video Memeory.
This function can be used to cut out a part of the video frame in order to save memory. It is also used to
remove blanking information in special input timing modes (see chapter 2.3 for details).
Page 126

Video Interface Controller
2 VIC Description

2.1 Data Input Formats

Video Interface Controller supports different color formats displayed in figure 2-1 but does not convert
color format into each other. Color depth for video target layers has to match color depth of incoming video
data. Color conversion and mapping to display color depth will be done in output stage within GPU.

The Video Interface Controller has two data ports (port A and B), each 8 bit wide. In single port mode only
port A will be used. Double port mode means that data will be received on both ports (A and B, 16 bit).
Additionally VIC supports two different clock modes. Single clock mode uses only one clock phase (edge)
while double clock mode uses both phases. In double clock mode, data on port A changes with every edge
of clock. Port B (if enabled) and control signal only works in single clock mode. Different color modes de-
pending on clock mode are shown in figure 2-1.
VIC Description Page 127

MB87J2120, MB87P2020-A Hardware Manual
Figure 2-1: Color assignment in single - and double port mode

Single Port (Port A only)

Single Clock

T1
T2
T3
T4

Ua7 ... Ua0
Ya7 ... Ya0
Va7 ... Va0
Yb7 ... Yb0

YUV422

T1

T2

α R7 ... R3 G7,G6
G5 ... G3 B7 ... B3

RGB555

T1

T2

α V7 ... V3 Y7,Y6
Y5 ... Y3 U7 ... U3

YUV555

T1

T2
R7 ... R3 G7...G5

G4 ... G2 B7 ... B3
RGB565

T1

T2
V7 ... V3 Y7...Y5

Y4 ... Y2 U7 ... U3
YUV655

Double Clock

T1

T2

Ua7 ... Ua0
Ya7 ... Ya0
Va7 ... Va0
Yb7 ... Yb0

YUV422

α R7 ... R3 G7,G6
G5 ... G3 B7 ... B3

RGB555

α V7 ... V3 Y7,Y6
Y5 ... Y3 U7 ... U3

YUV555

R7 ... R3 G7...G5
G4 ... G2 B7 ... B3

RGB565

V7 ... V3 Y7...Y5
Y4 ... Y2 U7 ... U3

YUV655

Φ1
Φ2
Φ1
Φ2

Φ1
Φ2

Φ1
Φ2

Φ1
Φ2

Φ1
Φ2

Double Port

Single Clock

Port A Port B
Ya7 ... Ya0 Ua7 ... Ua0

Va7 ... Va0Yb7 ... Yb0

T1

T2
YUV422

α R7 ... R3 G7,G6 G5 ... G3 B7 ... B3 RGB555

α V7 ... V3 Y7,Y6 Y5 ... Y3 U7 ... U3 YUV555

R7 ... R3 G7...G5 G4 ... G2 B7 ... B3 RGB565

V7 ... V3 Y7...Y5 Y4 ... Y2 U7 ... U3 YUV655

Double Clock

Port A Port B
Y7 ... Y0 U7 ... U0

U7 ... U0
YUV444

Φ1
Φ2

R7 ... R0 G7 ... G0

G7 ... G0
RGB888

Φ1
Φ2B7 ... B0

V7 ... V0
Page 128

Video Interface Controller
2.2 Data format in Video RAM (SDRAM)

Figure 2-2 shows the physical placement of all supported video color formats within a layer. These formats
are equal to those of Graphic Processing Unit (GPU) and Pixel Processor (PP) so that video input PP draw-
ings can be mixed within one layer. Of course a drawing will be overwritten with the input video picture
but nonoverlapping merging of drawing and video is possible. Be also aware of layer synchronization be-
tween VIC and GPU; either only one layer is taken for synchronization or the drawing is copied on all two
or three layers with help of MemCP command. If only one of two/three layers contains the drawing you will
see a flicker on display output.

VIC performs a format mapping from video input format according to figure 2-1 to the Lavender/Jasmine
internal format according to figure 2-2 for a given color depth. Note that some color formats are not sup-
ported by Lavender. Table 2-1 gives an overview on available formats for both display controllers.

Figure 2-2: Different color formats in video RAM

Table 2-1: Supported Video color formats for Lavender and Jasmine

Format Lavender Jasmine Comment

YUV422 grayscale yes

Lavender does not contain a YUV to
RGB conversation therefore this for-
mat is converted to grayscale with
256 steps.

YUV444 grayscale yes

Lavender does not contain a YUV to
RGB conversation therefore this for-
mat is converted to grayscale with
256 steps.

RGB888 yes yes

RGB565 yes yes

Y0 U0 Y1 V0 Y2 U2 Y3

YUV 422

V0 Y0 U0 V1 Y1

R0 G0 B0
R1 G1

R0 G0 B0 G1 R2 G2 B2

YUV 444
24 bit

16 bit

RGB 888
24 bit

R1 B1 R3 G3
RGB 565
16 bit

R0 G0 B0 G1 R2 G2 B2R1 B1 R3 G3
RGB 555
16 bit

X X

X X X X X X X X

32 bit

X X X X X X X X

U1

B1

X

V0 Y0 U0 Y1 V2 Y2 U2V1 U1 V3 Y3
YUV 555
16 bit

X XX

V0 Y0 U0 Y1 V2 Y2 U2V1 U1 V3 Y3
YUV 655
16 bit

Note: RGB --> VYU
VIC Description Page 129

MB87J2120, MB87P2020-A Hardware Manual
2.3 Data Input Timing

The VIC component supports three different input timing modes which can be selected using register
VICVISYN_SEL. The preferred and default mode is denoted "Videoscaler-Mode" in the following.

2.3.1 Videoscaler-Mode

Videoscaler-Mode has been implemented for VPX Video Pixel Decoder family (Micronas Intermetall),
which provides up to 16 data bits (DATA; Pin: VSC_D[15:0]), a video clock (CLKV; Pin: VSC_CLKV),
a vertical synchronization signal (VREF; Pin: VSC_VREF), a field identification signal (FIELD;
Pin: VSC_IDENT), a horizontal video active signal (VACT; Pin: VSC_VACT) and additional an optional
alpha key signal (ALPHA; Pin: VSC_ALPHA). Other video deocoders are supported if they provide a sim-
ilar interface and timing. See timing diagram (figure 2-3) for detailed information.

Figure 2-3: Videoscaler timing (general)

VREF pulse indicates the start of a new field. FIELD changes should happen at least one clock cycle before
negative edge of VREF (see figure 2-3).

VACT marks an active video line. Due to downscale function of Videoscaler inactive lines are possible.
Positive edge of VACT indicates the start of an active line, negative edge denotes the end of line. During
VACT is active, VIC samples data received on data ports and writes them into Video Memory (SDRAM).
Polarities of control signals are adjustable, see register VICPCTRL.

RGB555 yes yes

YUV555 - yes
Lavender does not contain a YUV to
RGB conversation (see GPU
description)

YUV655 - yes
Lavender does not contain a YUV to
RGB conversation (see GPU
description)

Table 2-1: Supported Video color formats for Lavender and Jasmine

Format Lavender Jasmine Comment

2..9 lines

>1 clock cycle

1 line

VREF

FIELD

VACT

DATA
Page 130

Video Interface Controller
Figure 2-4: Videoscaler timing (detailed)

2.3.2 CCIR-Mode

In CCIR-Mode no explicit control signals are used. Control informations are directly merged into data
stream (data port A). VIC component extracts control information from data and maps it to internal signals
similar to Videoscaler-Mode.

The CCIR-Mode is only available for MB87P2020-A (Jasmine).

Figure 2-5: Definitions for CCIR mode

There are two timing reference codes, one at the beginning of each video data block (SAV: start of active
video) and one at the end of video data block (EAV: end of active video). Each code consists of a four-byte-
sequence. The first three bytes are fixed preamble. The fourth word carries information about field infor-
mation (F), field blanking (V) and line blanking (H).

Table 2-2: Timing reference code sequence

Bit number 7 6 5 4 3 2 1 0

FIRST 1 1 1 1 1 1 1 1

SECOND 0 0 0 0 0 0 0 0

THIRD 0 0 0 0 0 0 0 0

FOURTH 1 F V H P3 P2 P1 P0

CLKV

VACT

DATA_A
(double clock)

DATA_A
DATA_B
(single clock)

first sample last samples

E
A

V

SA
V

fi
el

d
2

fi
el

d
1

fr
am

e

VIC Description Page 131

MB87J2120, MB87P2020-A Hardware Manual
F-bit:

• '0' during field number 1

• '1' during field number 2

V-bit:

• '1' during field blanking

• '0' else

H-bit:

• '0' in sequence SAV

• '1' in sequence EAV

Bits [3:0] (P3..P0) are protection bits. The value of those bits depends on bits F, V and H.

The VIC implements an error detection and correction based on protection bits. It is possible to detect two-
bit-errors and to correct one-bit-errors.

In case of a two-bit-error the controller takes F- and V-bit directly from current TRC (without error correc-
tion) and inverts H-bit received from previous TRC.

2.3.3 External-Timing-mode

The External-Timing-Mode is only available for MB87P2020-A (Jasmine).

External-Timing-mode is together with VIC windowing function (Register: VICLIMEN) a generalized
Videoscaler-Mode. It is able to receive a horizontal synchronization signal (HSYNC) and a vertical syn-
chronization signal (VSYNC) which is provided by many video devices. Note that the data has to be one of
the formats described in chapter 2.1.

Polarities can be controlled by register EXTPCTRL. Control signal (HSYNC, [pin VSC_VACT], VSYNC,
[pin VSC_VREF] and PARITY [pin VSC_IDENT]) will be taken directly from input.

The HSYNC-pulse tags the begin of a new line and the VSYNC-pulse the begin of a new field/frame. Active
video needs not to be indicated additionally. The start and length of the visible window should be controlled
by windowing function for both dimensions.

Table 2-3: Definition of SAV, EAV and protection bits

fixed
SAV/EAV protection bits

F V H P3 P2 P1 P0

1 0 0 0 0 0 0 0

1 0 0 1 1 1 0 1

1 0 1 0 1 0 1 1

1 0 1 1 0 1 1 0

1 1 0 0 0 1 1 1

1 1 0 1 1 0 1 0

1 1 1 0 1 1 0 0

1 1 1 1 0 0 0 1
Page 132

Video Interface Controller
Figure 2-6: External-Timing

Related registers: VICLIMEN, VICLIMH, VICLIMV, EXTPCTRL

HSYNC

1 line (blanking and active video)

HSYNC^
EXTPCTL[1]

internal VACT
after windowing

offset length (active video line)
VIC Description Page 133

MB87J2120, MB87P2020-A Hardware Manual
Page 134

Video Interface Controller
3 VIC settings

3.1 Register list

Table 3-1: VIC register description

Symbol Address. Description/Definition

VICSTART h4000 input layer start coordinates
X[29:16] : x coordinate (default: 0)
Y[13:0] : y coordinate (default: 0)

VICALPHA h4004 Color to be mapped when alpha pin is active and alpha_mode=1
(VICCTRL[6]). Bit occupancy depending on color mode (LSB alligned).
COL[23:0]:

— [7:0] : value for blue (U)

— [15:8] : value for green (Y)

— [23:16] : value for red (V)

default: 24‘b0

VICCTRL h4008 MODE[3:0]: color_mode

— 0100: RGB555

— 0101: RGB565

— 0110: RGB888

— 0111: YUV422

— 1000: YUV444

— 1110: YUV555

— 1111: YUV655

CLOCK[4]: clock_mode

— 0: single clock

— 1: double clock

PORT[5]: port_mode

— 0: single port

— 1: double port

ALEN[6]: alpha_mode

— 0: don‘t use alpha information

— 1: use alpha

BSWAP[7]: byte_swap

— 0: {A[15:8],B[7:0]}

— 1: {B[15:8],A[7:0]}
VIC settings Page 135

MB87J2120, MB87P2020-A Hardware Manual
VICFCTRL h400C FST[3:0]: primary_layer_address

SEC[7:4]: secondary_layer_address

TRD[11:8]: third_layer_address

ODDEN[16]: enable_odd_fields

— 0: disabled

— 1: enabled

EVENEN[17]: enable_even_fields

— 0: disabled

— 1: enabled

VICEN[18]: vic_enable

— 0: disabled

— 1: enabled

SKIP[20]: skip_fields_enable

— 0: use every field

— 1: skip every 2nd field of each type

FRAME[21]: frame/field

— 0: field mode (store one field in each layer)

— 1: frame mode (interlocked storage of two fields in each layer)

ODDFST[22]: odd_field_first

— 0: even field is top field

— 1: odd field is top field

VICPCTRL h4010 Polarity control for VPX video synchronization signals. Those settings
only effects if "VPX video source" is selected (VICVISYN[1:0] = 2'b00)

VREF[0]: vref polarity

— 0: high active

— 1: low active

VACT[1]: vact polarity

— 0: high active

— 1: low active

FIELD[2]: field polarity

— 0: polarity unchanged

— 1: invert polarity

ALPHA[3]: alpha polarity

— 0: high active

— 1: low active

Table 3-1: VIC register description

Symbol Address. Description/Definition
Page 136

Video Interface Controller
VICFSYNC h4014 SWL[14:0]: Switch Level (2-layer mode only)
SYNC[15]: Layer Sync Mode

— 0: 2-layer mode

— 1: 3-layer mode

REL[16]: Frame Rate Relation (2-layer mode only)

— 0: GPU is faster than VIC

— 1: VIC is faster than GPU

SDRAM h401C LP[2:0]: low priority (default: 3‘b010)
HP[6:4]: high priority (default: 3‘b110)

VICBSTA h4020 LOAD[6:0]: fifo load

REQ[8:7]: SDC request status

— b00: IDLE

— b01: REQ1

— b10: WAIT1

CLR[9]: clear fifo

ADD[12:10]: address register load

— bx00: empty

— bx01: 1 burst

— bx10: 2 burst

— bx11: 3 burst

— bx00: 4 burst (full)

— b0xx : NORM

— b1xx : FULL, but no error (error flag will be set with next new
address)

FSM[15:13]: fifo_fsm state

— b000 : NORM

— b001 : WAIT

— b101 : WAIT1

— b010 : ERROR

— b111 : RESET

— b110 : ERROR1

— b011 : RESET1

AERR[16] : address error

FF[17] : fifo full

FE[18] : fifo empty

Table 3-1: VIC register description

Symbol Address. Description/Definition
VIC settings Page 137

MB87J2120, MB87P2020-A Hardware Manual
VICRLAY h4024 AIVL[3:0]: actual written video layer

LIVL[11:8]: anteriorly written video layer

AOVL[23:16]: actual output video layer

VICVISYN h4028 SEL[1:0] : video source select

— b00 : VPX

— b01 : CCIR - TRC

— b10 : CCIR - ext. sync

START[8] : selector for picture start flag (to ULB)

— 0 : VIC - start writing picture

— 1 : GPU - start reading picture

SHUFF[20:16] : Data Bus Shuffler
default: 5'b00000
For details see chapter 3.2.

DEL[25:24] : data delay

— b00: delay data 0 cycle respective VSC_VACT

— b01: delay data -1 cycles respective VSC_VACT

— b10: delay data -2 cycles respective VSC_VACT

— b11: delay data -3 cycles respective VSC_VACT

VICLIMEN h402C LIMENA[0] : limit size enable

— 0: limit size disabled

— 1: limit size enabled

VICLIMH h4030 HOFF[10:0]: horizontal offset

HEN[26:16]: horizontal window length (including offset!)

Only effects if VICLIMEN[0] = 1!

VICLIMV h4034 VOFF[10:0]: vertical offset

VEN[26:16]: vertical window length (including offset!)

Only effects if VICLIMEN[0] = 1!

Table 3-1: VIC register description

Symbol Address. Description/Definition
Page 138

Video Interface Controller
3.2 Register Description

VICSTART (4000H):

GDC stores video fields or frames in different memory areas called layers. The VICSTART register defines
layer start coordinates in x- and y-direction. Note that coordinates are equal for all layers used for video
input (one, two or three layer).

Related registers: VICFCTRL[11:8], VICFCTRL[7:4], VICFCTRL[3:0]

Figure 3-1: Start coordinate definitions

VICALPHA (4004H):

The VICALPHA register contains the value of color which will be mapped if alpha key signal is active and
alpha_mode is enabled (see register VICCTRL[6]). Note that bit occupancy depends on color mode (see
figure 3-2).

Related register: VICCTRL[6]

EXTPCTL h4038 Polarity control for external video synchronization signals. Those set-
tings only effects if "external video source" is selected
(VICVISYN[1:0] = 0b10)

VREF[0]: vsync

— 0: high active

— 1: low active

HREF[1]: hsync

— 0: high active

— 1: low active

PARITY[2]: parity

— 0: polarity unchanged

— 1: invert polarity

ALPHA[3]: alpha

— 0: high active

— 1: low active

CLKPDR hFC04 VII[12]: video clock invert

— 0: don’t invert clock

— 1: invert clock

Table 3-1: VIC register description

Symbol Address. Description/Definition

VICSTART[13:0] (Y)

V
IC

S
T

A
R

T
[2

9:
16

] (
X

)

layer

field or frame
VIC settings Page 139

MB87J2120, MB87P2020-A Hardware Manual
Figure 3-2: Possible Color occupancy in register VICALPHA

VICCTRL (4008H):

The VICCTRL register contains settings for color mode, clock mode, port mode and byte swap. Those set-
tings should be done according to settings of external video decoder. Please use only suggestive combina-
tions of color-, clock- and port-mode.

VICFCTRL (400CH):

bit [3:0] (FST), [7:4] (SEC), [11:8] (TRD):

GDC’s memory space is divided in up to 16 areas (layer). Each of them has a logical layer address and can
contain video data. VIC implies a frame synchronization controller which mangages two or three layers
needed for frame synchronization (see register VICFSYNC). Layer addresses for VIC could be defined in
register VICFCTRL. Note that same addresses are allowed, but field/frame synchronization won't work cor-
rectly.

Related registers: VICSTART, VICFSYNC

bit 16 and 17 (EVENEN and ODDEN):

If those flags are set to zero, every field of the specified type (odd/even) will be skipped. So EVENEN (en-
able even fields) and ODDEN (enable odd fields) submit selection of field type. It is recommended to enable
only one field type to supress field jumping during displaying video layers. Function is to be seen in context
with VICFCTRL[20] (SKIP). Those flags have no relevance if VICFCTRL[21] (FRAME) is set.

Related registers: VICFCTRL[18], VICFCTRL[22:20]

bit 18 (VICEN):

The VICEN (VIC enable) switches video interface unit on (1) or off (0), („main switch“). It does also enable
or disable synchronization of video in- and output.

Related registers: VICFCTRL[17:16], VICFCTRL[22:20]

bit 20 (SKIP):

This flag controls the skip function of VIC. If SKIP is set to 1, every second field of each field type is
skipped. Skip enable function is to be seen in closed connection with VICFCTRL[16] (EVENEN) and
VICFCTRL[17] (ODDEN). If both of them and SKIP are set to one, every second frame is skipped. So it is
possible to reduce data rate between VIC and SDRAM to a half of the output data rate from external video
pixel decoder. A quarter of input data rate can be achieved be enabling only one field and skip. An example
is shown in the following figure (figure 3-3).

Related registers: VICFCTRL[18:16], VICFCTRL[22:21]

RGB888
R G B

YUV444
V Y U

RGB555
R G B

RGB565
R G B

YUV555
V Y

YUV655
V Y U

U

YUV422
V Y U
Page 140

Video Interface Controller
Figure 3-3: Reducing data rate by skipping fields (examples)

bit 21 (FRAME):

The FRAME flag controls the storage format of input video in video RAM. If FRAME is set to 1, a complete
frame (even and odd field) will be saved interlocked in each video layer. In case of FRAME=0 every layer
contains one field and interleaced to progressive format conversion can be done in output process (line dou-
bling).

Related registers: VICFCTRL[18:16], VICFCTRL[20], VICFCTRL[22], VICPCTRL[2] or EXTPCTRL[2]
in association with VICVISYN[1:0]

Figure 3-4: Frame mode vs. field mode

bit 22:

ODDFST (odd field first) determines the position of the fields in a frame related to time. The following fig-
ure illustrates the issue. This flag has no relevance if VICFCTRL[21]is set to 0.

vref

field

input data

odd even
en

ab
le

_o
dd

_f
ie

ds
en

ab
le

_e
ve

n_
fie

ld
s

sk
ip

_e
na

bl
e

1 1 1

1 0 0

0 1 1

VICSTART[13:0]

V
IC

S
T

A
R

T
[2

9:
16

]

frame mode field mode

layerlayer field1
field2
VIC settings Page 141

MB87J2120, MB87P2020-A Hardware Manual
Figure 3-5: odd_field_first flag: mode of action

VICPCTRL (4010H):

The flags in this word set the polarity of input control signals (vact, vref, alpha, field). Note that those bits
only influence the behaviour of VIC if Videoscaler-Mode is enabled as video source
(VICVISYN[1:0]=0b00).

Related register: VICVISYN[1:0]

VICFSYNC (4014H):

Synchronization of video input and video output is frame/field based. Frame synchronization unit is to en-
sures correct order of pictures and avoids overtaking of read and write pointer in the same active layer. Two
modes are possible and can be selected by VICFSYNC[15] (SYNC).

bit 15 (SYNC):

If Layer Sync Mode (SYNC) is set to 1, the 3 layer synchronization mode will be used. The used memory
space is reduced by selecting three layer mode and setting all layer addresses (VICFCTRL[3:0], VICFC-
TRL[7:4], VICFCTRL[11:8]) to the same layer number. Then video input and output are not synchronized.

In two layer mode (SYNC=0) the synchronization will be performed by comparing vertical read/write po-
sition (GPU/VIC) in actual layer. There are two layers for video I/O (primary layer: VICFCTRL[3:0], sec-
ondary layer VICFCTRL[7:4]). The third layer address (VICFCTRL[11:8]) has no effect.

Releated registers: VICFSYNC[16], VICSYNC[14:0], VICFCTRL[3:0], VICFCTRL[7:4], VICFC-
TRL[11:8]

bit 16 (REL):

This bit has relevance if VICFSYNC[15] is set to 0 (2-layer-mode).

The Frame Rate Relation (REL) flag indicates the relation between input (VIC) and output (GPU) frame
rate. The faster unit toggles its layer each time a layer is fully processed. The other unit compares its line
pointer with the switch level VICFSYNC[14:0] (SWL) to decide, which layer using next. For example, if
REL is set to 0, frame output rate is higher than frame input rate. The current active VIC layer toggles with

vref

field

input data

odd even

one frame if odd_field_first=0 one frame if odd_field_first=1

layer

lines
Page 142

Video Interface Controller
every new input frame. The next GPU layer is synchronized depending on current VIC layer and vertical
position of write pointer (in this layer) which will be compared with SWL. If current vertical write position
is above the programmable threshold SWL, the current VIC write layer will be allocated to GPU because an
overtaking of read and write pointer in the same layer is excluded. Otherwise (SWL is less than VIC write
pointer) the frame synchronization unit denotes the inactive VIC layer to be the next active GPU layer.

Releated registers: VICFSYNC[15], VICSYNC[14:0], VICFCTRL[3:0], VICFCTRL[7:4]

Figure 3-6: Example of frame synchronization: video output is faster than video input

bits [14:0] (SWL):

This bit has only effect if VICFSYNC[15] is set to 0 (2-layer-mode).

For explanation of SWL in context with VICFSYNC[16] (REL) see previous point. SWL will be compared
with the vertical address. Note that this address (and SWL too) includes an offset (VICSTART[13:0]). If
frame mode is enabled (VICFCTRL[21] = 1), SWL indicates the field (0: even, 1: odd) where SWL is located.
In field mode (VICFCTRL[21] = 0) SWL[14] has no function (should be set to 0).

Releated registers: VICFSYNC[16], VICSYNC[15], VICFCTRL[3:0], VICFCTRL[7:4]

VICRLAY (4024H):

VICRLAY contains some layer information, which can be read from ULB (i.e. after a picture start was in-
dicated). Three different informations will be given:

• VICRLAY[3:0] (AIVL) - this is the layer video data will be written in currently

• VICRLAY[11:8] (LIVL) - this is the previous written video layer

• VICRLAY[23:16] (AOVL) - this is the current displayed video layer

VICRLAY is a read only register.

Related registers: VICVISYN[8], VICFCTRL[11:8], VICFCTRL[7:4], VICFCTRL[3:0]

VICVISYN (4028H):

bit [1:0] (SEL):

Switches to select an input timing scheme. In Videoscaler-Mode (b'00) VIC interface uses explicit synchro-
nization signals. Polarity of those signals can be selected by VICPCTRL. SEL=0b10 is a similar timing
scheme as Videoscaler-Mode, polarity can be controlled by EXTPCTRL. CCIR-mode uses timing reference
codes merged into the data stream. No explicit control signals are used.

bit[8] (START):

Both, VIC and GPU, generate their own picture start signal. It indicates the begin of writing (VIC) or read-
ing (GPU) a new picture into or from data RAM. One flag (FLNOM_VICSYN) indicates the picture start to

0even 0odd 1even 1odd 2even 2odd 3even 3odd 4even 4odd 5even 5odd

input frames (interleaced)

timeA B A B A B
input layer

V
IC

0 1 2 3 4 5

output frames (progressive)

timeA BA BA B
output layer

G
PU

0 0 1 3

A B A B
VIC settings Page 143

MB87J2120, MB87P2020-A Hardware Manual
ULB. START selects one of the two signals (VIC-start or GPU-start) and allocates it to FLNOM_VICSYN.
This is a useful feature to synchronize anything on picture start controlled by software.

Related register: VICRLAY

bits[20:16] Bus Shuffler (SHUF)

Figure 3-7: Definition of port - internal bus - assignment

VIC owns two data ports which are splitted into four internal busses (figure 3-7). To get more flexibility
(i.e. connect another external video controller to VIC without changing the board) VIC includes various
functions:

• clock invert function (CLKPDR[12])

• byte swap to exchange ports A and B

• bus shuffler to exchange internal busses (all combination are possible, see table 3-2)

A schematic overview about data path are given in figure 3-8. Note that contradictory settings can abrogate
each other (i.e. setting SHUF=2 abrogates setting VICCTRL_BSWAP=1).

Figure 3-8: Schematic overview about busshuffler function

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9

b0 b2 b4 b6 b8

clock

A

B

a0 a2 a4 a6 a8AP

a-1 a0 a2 a4 a6AD

a1 a3 a5 a7 a9AN

b0 b2 b4 b6 b8B
Ports

Internal Buses

PORT A

PORT B

CLKV

VIC_DCU

CLOCK_UNIT

VIC

C
LK

V
C

LK
V

X

byteswap

vii

AP

AD

AN

B

AP

AD

AN

B

shuff
Page 144

Video Interface Controller
Related registers: VICCTRL[7], CLKPDR[12]

Table 3-2: VIC Bus Shuffler settings

Bus Shuffler
Value

BUS A,
pos. edge (AP)

Bus A, delayed
(AD)

Bus A, neg. edge
(AN)

Bus B
(B)

0 (default) AP AD AN B

1 AD AP AN B

2 B AD AN AP

3 AP B AN AD

4 AP AD B AN

5 AN AD AP B

6 AP AN AD B

7 AP B AD AN

8 AD B AN AP

9 AD B AP AN

10 AD AN AP B

11 AD AN B AP

12 AP AN B AD

13 AD AP B AN

14 B AD AP AN

15 B AN AD AP

16 B AN AP AD

17 B AP AD AN

18 B AP AN AD

19 AN AD B AP

20 AN AP AD B

21 AN AP B AD

22 AN B AP AD

23 AN B AD AP

others AP AD AN B
VIC settings Page 145

MB87J2120, MB87P2020-A Hardware Manual
bits [25:24] (DEL):

DEL provides an option to shift data relative to pin VSC_VACT with up to -3 cycles.

Figure 3-9: DEL definitions (example: DEL=3)

VICLIMEN (402CH):

The VIC-subunit VIC_LIMIT is enabled or disabled by this switch. So a pan function can be realized. An-
other reason to enable VIC_LIMIT could be the compensation of different input sync timing. Relating con-
trol registers are VICLIMH (horizontal offset and horizontal window length [video clocks per step]) and
VICLIMV (vertical offset and vertical window length [lines per step]).

For horizontal parameters the context of input pixel per clock which depends on video colour depth and win-
dow offset/length should be considered. Since some colour formats transport less than one pixel per clock
and the offset and length is set up in clock units it is necessary to calculate the setup value depending on
colour depth. For each colour depth a factor ’f’’ for horizontal offset and length can be calculated as follows:

Registers VICLIMH_HOFF and VICLIMH_HEN have to be multiplied by ’f’. Note that for most colour for-
mats ’f’ can be set to one so that offset and length can be set directly in pixel dimensions. Table 3-3 lists all
colour formats with their factor.

Additionally some colour formats need a special alignment for horizontal offset and length. Otherwise col-
our distortions may occur. Table 3-3 gives also an overview on necessary alignments.

Table 3-3: Horizontal offset and length parameters for different colour depths

Format Clock Port Factor ’f’ Alignment

YUV422 Single Single 2 4

Double 1 2

Single Double 1 2

RGB555 Single Single 2 2

Double 1 1

Single Double 1 1

YUV555 Single Single 2 2

Double 1 1

Single Double 1 1

RGB565 Single Single 2 2

Double 1 1

Single Double 1 1

VACT

DATA

DEL=3

f
Clocks

Pixel
----------------=
Page 146

Video Interface Controller
Related registers: VICLIMH, VICLIMV, VICVISYN[25:24]

Figure 3-10: window definitions

EXTPCTRL (4038H):

The flags in this word set the polarity of input control signals (hsync, vsync, alpha, parity). Note that those
bits are only an effective if „ext. Sync“ is selected as video source (VICVISYN[1:0]=0b10).

Related registers: VICVISYN[1:0]

YUV655 Single Single 2 2

Double 1 1

Single Double 1 1

YUV444 Double Double 1 1

RGB888 Double Double 1 1

Table 3-3: Horizontal offset and length parameters for different colour depths

Format Clock Port Factor ’f’ Alignment

h_win_length

h_win_offset

v
_
w
i
n
_
o
f
f
s
e
t

v
_
w
i
n
_
l
e
n
g
t
h

vref_edge

v
a
c
t
_
e
d
g
e

VIC settings Page 147

MB87J2120, MB87P2020-A Hardware Manual
Page 148

B-8 Graphic Processing Unit (GPU)
Page 149

MB87J2120, MB87P2020-A Hardware Manual
Page 150

Graphic Processing Unit
1 Functional Description

1.1 GPU Features

The GPU (Graphics Processing Unit) is a part of Fujitsu’s display controllers MB87J2120 (’Lavender’) and
MB87P2020-A (’Jasmine’). In the following these two controllers are referred to as GDC (graphics display
controller).

The GPU is responsible for producing visible images from pixel data stored in VideoRAM (SDRAM). Its
features include:

• maximum flexibility by configuration registers for most functions

• wide range of supported display types and sizes (see chapter 7)

• twin display mode (digital and analog displays in parallel) (Jasmine only)

• up to four layers from a whole of 16 displayed simultaneously and overlapping in four planes

• size, color resolution and position on the display configurable on a per-layer basis

• blinking and transparency individual for each layer

• separate setting for display background color

• YUV to RGB matrix with configurable coefficients as well as a loadable gamma table included (Jas-
mine only)

• synchronization with the video interface controller (VIC) allowing frame rate conversion

• flexible generation of almost arbitrary sync signals

• individual settings for clamping values at digital and analog outputs (Lavender can only handle one
clamping color)

• color key output

• internal and external pixel clock

• masking and division by 2 for internal pixel clock

• programmable interrupts

— at specified display location

— for insufficient memory bandwidth

• diagnostic read back

— current display location

— current blink state of layers

— current input FIFO load

The image on display is produced in a three-step approach: fetching pixel data, transforming and merging
the layers from their respective color space to one common, and finally formatting the bit stream appropriate
for the actual display used.
Functional Description Page 151

MB87J2120, MB87P2020-A Hardware Manual
1.2 GPU Overview

1.2.1 Top Level Structure

Figure 1-1 shows the GPU top level structure, which consists of the four main components DFU, CCU,
LSA, and BSF. The CBP is actually only an auxiliary unit to couple the other units to the system-wide con-
trol bus. Control registers are assigned their respective units, so there is no GPU-global register set (al-
though it appears as such for the programmer). The functions of each unit will be discussed briefly in the
following sections.

1.2.2 DFU Function

The DFU (Data Fetching Unit) interacts with the SDC (SDRAM Controller) to transport pixel data from
VideoRAM into the GPU pipeline. Since VideoRAM is a shared resource within GDC, the DFU is equipped
with 4KBits of FIFO to balance data rate and optimize RAM usage by enabling burst accesses.

DFU structure is shown in figure 1-2. Pixels from layers displayed simultaneously are fetched sequentially
according to their respective start points, display offsets, color resolutions, and vertical stacking. This is car-
ried out by the Fetch FSM. The data obtained from SDC is put into the FIFO, from where it is read out later
by the PixelPump and fed through the CCU into the LSA, where the vertical (Z-)order is actually real-
ized.The PixelPunp is also used to carry out the chrominance demultiplexing for YUV422 layers (cf. 3.7.1).

Figure 1-1: GPU top level structure. Thick black lines show the flow of pixel data, thin black lines the
control flow. Thick gray lines represent register set data.

DFU

Data

Unit

CCU

Color
Conversion
Unit

Fetching
Control Bus Port

LSA

Line
Segment

CBP

BSF

Bit

Accu Formatter
DAC

I / O Buffer

Stream

SDC

VideoRAM

Ctrl Bus

Display
Page 152

Graphic Processing Unit
1.2.3 CCU Function

The CCU (Color Conversion Unit) handles all transformations necessary to convert the layers displayed
from their respective color space to one common color space. Further, special colors for each layer can be
defined that trigger transparency and blinking. These colors are detected by the CCU and the appropriate
action is carried out.

The CCU contains seven functional sub-units plus its own register set. This register set stores all layer-spe-
cific color information which control the transformations. Figure 1-3 shows the structure of the CCU. The
Blinkers component provides a pulse-width modulated blink signal for each layer. In the ColorConv com-
ponent blink and transparent colors are detected. The CLUT (Color Look-Up Table) is used to convert lay-
ers with color resolutions of less than or equal to 8 bits to higher resolutions. There is only one CLUT for

Figure 1-2: DFU structure. Pixel data is transported from SDC via the FetchFSM to the Input FIFO.
From there it is read out by the PixelPump and fed into CCU. The register set contains all necessary
geometric and color space values to fetch the pixels. Some of the registers are double-buffered and
updated on a per-frame basis.

Fetch FSM

to SDC

from SDC

Input FIFO

Register Set w/ FrameLock

PixelPump

to CBP

to CCU

Figure 1-3: CCU structure. Pixel data is fed in by DFU and travels through ColorConv, optionally
through CLUT, and is prepared by SpaceMap for output to LSA.

Matrix GamTbl

ColorConv

Blinkers

SpaceMap

Register Set

Duty Ratio
Modulator

from DFU

to CBP

CLUT
to LSA
Functional Description Page 153

MB87J2120, MB87P2020-A Hardware Manual
all layers, however, each layer may have its own offset for look-up. The Matrix is used for transforming
YUV (YCbCr) video data into RGB colorspace (cf. 3.7.2). It is supplemented with a gamma table (GamTbl)
to carry out a non-linear inverse gamma correction (cf. 3.7.3). The SpaceMap component merges the indi-
vidual layer color spaces to one common intermediate color space and further to one physical color space.
The Duty Ratio Modulator is used to provide pseudo gray levels (or colors) for displays with a low number
of bits per pixel. Color space conversion is explained more detailed in chapter 2.

1.2.4 LSA Function

The LSA (Line Segment Accumulator) is used to realize the vertical layer order in up to four planes. It acts
also as internal FIFO between GPU front end and back end, where clock domain transition between GDC
core clock and pixel clock takes place. Figure 1-4 shows the LSA structure.

The LSA contains two RAM blocks controlled by the BankManager component. These components per-
form the actual FIFO functionality. Three adjustment components (one for writing, two for reading) com-
plete the unit. They are used to efficiently employ the RAMs. There are two RAMs to allow for parallel
read-out when interfacing dual-scan displays.

Pixel data is fed in sequentially via WriteAdjust to one of the RAMs. Read-out is performed in parallel
through the respective ReadAdjust component. Z-ordering (vertical layer order) is achieved by writing pix-
els plane by plane sequentially into the LSA from bottom plane to topmost plane, thus overwriting pixels
hidden underneath others in higher planes.

1.2.5 BSF Function

The BSF (Bit Stream Formatter) unit performs the necessary preparations to actually output the picture on
a physical display (either with analog or digital interface). The BSF contains components for signal prepa-
ration and for synchronization. The structure is shown in figure 1-5.

The Timing component produces the synchronization frame for image data (see 3.9). It controls the LSA
read-out and provides positional information to the SyncSigs component. The XSync component supports
Timing when GDC is running with external synchronization. The SyncSigs component generates synchro-
nization signals for the physical display in a very flexible way (see 3.10). Further, it can produce a program-
mable interrupt. The components DigSwitch and DAC Sigs prepare pixel data for output on displays with
digital or analog interface, respectively. They select necessary signals and perform a delay compensation
between pixel and synchronization signals.

The ColorKey component allows the application of chroma-keying with GDC by detecting whether the pix-
el lie within a programmable color range (see 3.14.5).

Figure 1-4: LSA structure. Pixel data is prepared by WriteAdjust and then stored in one of the RAMs.
During read-out data is adjusted once again by the respective ReadAdjust.

Write
Adjust

to BSF

from DFU

from CCU

Bank Manager

Upper
LSA RAM

Lower
LSA RAM

Read
Adjust
for Lower

Read
Adjust
for Upper
Page 154

Graphic Processing Unit
Figure 1-5: BSF structure. Pixel data is fetched from LSA and prepared for output by DigSwitch
and DACSigs. Timing controls this fetching and establishs a position reference for SyncSigs, which
generates synchronization signals.

to LSA

Register Set

Timing

XSync

Key
Color

Switch
Dig

to CBP

Sync
Sigs

from LSA

key

digital out

hsync, vsync, vref

analog out
DAC Sigs

external sync in
Functional Description Page 155

MB87J2120, MB87P2020-A Hardware Manual
2 Color Space Concept

2.1 Background

The GDC-ASIC allows to use several numbers of bits per pixel to represent pictures in its VideoRAM (1,

2, 4, 8, 16, and 24 bits per pixel). They may even be different in different planes. The color1 space defined
by these bits shall be referred to as logical color space.

Actual displays, however, might have color resolutions differing from those in the logical space. The
number of bits per pixel as supported by the display actually wired to the GDC-ASIC shall be referred to as
physical color space.

Obviously, there is the need to map the logical onto the physical color space. Additional internal units such
as a Color Look-up Table (CLUT), a YUV to RGB Matrix (Jasmine only), and a Duty Ratio Modulator
(DRM) lead to another internal representation which shall be referred to as intermediate color space. This
internal representation is laid out as to provide some kind of common ground between logical and physical
color space.

2.2 Data Flow for Color Space Conversion within GPU

Figure 2-1 gives an overview on the logical data flow for color space conversion. This does not represent
actual GPU-pipeline stages but conceptual fields where the different color spaces apply.

Pixel data held in VideoRAM belongs to logical color space. It is mapped to intermediate color space
through one of the ways listed in Table 2-1. Mapping to physical color space is carried out according to
Table 2-2. Signals actually wired to the physical display are interpreted in this physical color space. How-
ever, there is one additional stage of conversion: bit stream formatting. Displays may require data in a
stream with bit groups not necessarily equal to one pixel. Therefore, an appropriate postprocessing is indis-
pensable (see 1.2.5 and 3.3).

1. “color” here refers to different hues as well as to different shades of monochrome

Physical
Color Space
Intermediate

Color Space
Logical

Color Space

Display Interface Signals

Video
RAM

CLUT

YUV GTab

DRM BSF DAC

Matrix

Display

Figure 2-1: Basic data flow for color space conversion.
Page 156

Graphic Processing Unit
2.3 Mapping from Logical to Intermediate Color Space

Table 2-1 lists the available mappings from logical to intermediate color space. The term direct designates
an immediate mapping wire by wire with more significant bits being clamped to zero as needed. For in-
stance, logical 2bpp is mapped directly onto intermediate RGB111 this way: I[3:0] = “0” & L[1:0].

The term lookup means using the look-up table for mapping. The term aligned designates a mapping in
which wires are connected in groups according to color channels with appropriate value scaling. For in-
stance:

• logical RGB555 to intermediate RGB666 (i.e. expansion of color channel bit with):
I[17:0] = L[14:10] & L[14] & L[9:5] & L[9] & L[4:0] & L[4]

• logical RGB555 to intermediate RGB333 (i.e. reduction of color channel bit with):
I[8:0] = L[14:12] & L[9:7] & L[4:2]

The term matrix designates application of a matrix multiplication. When transforming logical YUV422 to
an RGB intermediate format an optional chrominance interpolation may be applied (see 3.7). The term ach-
romatic describes a mapping from YUV to RGB color spaces by dropping chrominance information and
transforming the luminance to gray levels. All matrix and achromatic mappings are auto aligned to their

target bit with1.

The mapping from logical to intermediate color space is controlled by the settings for logical color space in
the layer’s respective layer description record and the setting of intermediate color space, matrix parame-
ters, and transfer bit in the merging description record.

2.4 Mapping from Intermediate to Physical Color Space

Table 2-2 lists the mappings from intermediate to physical color space. The terms direct and aligned keep
their meaning. The term modulated designates the usage of the Duty Ratio Modulator (see 3.8). The purpose
of this unit is to provide additional (pseudo-) levels (shades of hue or gray) for output, i.e. virtually expand
the color resolution in the physical color space. This is achieved by tuning the duty ratio of actually existing
physical bits. Accordingly, the term gamma means employing the gamma tables for mapping.

The mapping is controlled by the settings of intermediate color space in the merging description record and
the setting of physical color space in the display interface record.The resulting mapping from logical to
physical color spaces is shown by table 2-3. It is contains the possible path of transformation from pixel in
VideoRAM to those on the physical display.

1. Since matrix results are always in RGB888 color space this auto aligning implies at most a reduction of bit-
width whereas achromatic mapping can result in both, bit width reduction as well as expansion (see also
3.7.2).
Color Space Concept Page 157

M
B

87J2120, M
B

87P2020-A
 H

ardw
are M

anual

Page 158

fault, those in italics designate alternative mappings.

bits per
pixel

code

44 RGB666 RGB888

1 0

2 1

4 2

8 3

aligned / directa 16 4

aligned / directa 16 5

direct 24 6

16 7

24 8

16 14

16 15

18 24

13 6
Table 2-1: Mapping from logical to intermediate color space. Mappings in normal face are de

logical color
space

intermediate color space codes

1bpp RGB111 4bpp RGB222 RGB333 RGB4

1bpp lookup /
direct

lookup

2bpp lookup / direct lookup /
aligned

lookup

4bpp lookup lookup / direct lookup

8bpp lookup lookup /
direct

lookup /
aligned

lookup

RGB555 n/a aligned

a. Direct mapping is not available when RGB gamma forcing is applied.

RGB565 aligned

RGB888 aligned

YUV422 matrix / achromatic

YUV444 matrix / achromatic

YUV555b

b. This format is not available for Lavender.

matrix / achromatic

YUV655b matrix / achromatic

bits per pixel 1 3 4 6 9 12

code 0 9 2 10 11 12

G
raphic Processing U

nit

C
olor Space C

oncept
Page 159

.

ace.

bits per
pixel

code

66 RGB888

1 0

3 9

4 2

6 10

 forcing is applied.

9 11

12 12

a
n/a 18 13

direct /

gammaa
24 6

24

6

Table 2-2: Mapping from intermediate to physical color sp

intermediate
color space

physical color space

1bpp RGB111 4bpp RGB333 RGB444 RGB6

1bpp direct n/a

RGB111 n/a direct n/a

4bpp modulated direct n/a

RGB222 n/a modulated n/a

RGB333 n/a direct /

gammaa

a. Selectable for intermediate color space stemming from one of the YUV logical color spaces, or if RGB gamma

n/a

RGB444 n/a direct /

gammaa
n/a

RGB666 n/a direct /

gamma

RGB888 n/a

bits per pixel 1 3 4 6 12 18

code 0 9 2 11 12 13

M
B

87J2120, M
B

87P2020-A
 H

ardw
are M

anual

Page 160

l color space

bits per
pixel

code

RGB666 RGB888

ld ld 1 0

ld, la ld 2 1

ld, la ld 4 2

ld ld 8 3

dd, ad dd, ad 16 4

dd, ad dd, ad 16 5

ad dd 24 6

xd, yd xd, yd 16 7

xd, yd xd, yd 24 8

xd, yd xd, yd 16 14

xd, yd xd, yd 16 15

18 24

13 6
Table 2-3: Resulting mapping from logical to physica

logical color
space

physical color space

1bpp RGB111 4bpp RGB333 RGB444

1bpp dd, ld, lm ld, lm ld ld ld

2bpp dd, ld,am, lm dd, ld, ad, lm ad, ld ld ld, la

4bpp ld, dm , lm dd, ld, lm dd, ld ld ld, la

8bpp ld, lm ld, dm, lm ld ad, ld ld

RGB555 ad ad

RGB565 ad ad, aa

RGB888 ad ad

YUV422 xd, yd xd, yd

YUV444 xd, yd xd, yd

YUV555a

a. This format is not available for Lavender.

xd, yd xd, yd

YUV655a xd, yd xd, yd

bits per pixel 1 3 4 9 12

code 0 9 2 11 12

G
raphic Processing U

nit

C
olor Space C

oncept
Page 161

Mea

odulation

on

matic
ning of abbreviations:

d: direct mapping

l: look-up mapping

a: aligned mapping

m: mapping by duty m

x: matrix multiplicati

y: conversion to achro

MB87J2120, MB87P2020-A Hardware Manual
3 GPU Control Information

The following sections describe the information necessary for output of video and picture data on a display
wired to GDC. The tables give only the type of information and its respective size, they do not imply any
assignment to GDC-registers. The intention is to sort information according to their conceptual place of ap-
plication and to group data belonging together.

3.1 Layer Description Record

This group of data describes all information belonging to a single layer l (graphics or video) in VideoRAM
(i.e. within logical color space).

Table 3-1: Layer Description Record

Information Size (bits)

1 Physical address in VRAMa

The address of the word containing the first pixel of the layer according
to MCU address space.

a. This information is held in SDC

32

2 Domain size DXl a, (DYl)
Logical area covered by the layer in VideoRAM. DY only pro forma,
the user is responsible for providing enough RAM space per layer.

2 x 14
unsigned

3 First pixel to be displayed FXl, FYl
Upper left corner of area in VRAM actually to be displayed

2 x 14
unsigned

4 Display window size WXl, WYl
Size of area to be displayed

2 x 14
unsigned

5 Display window offset OXl, OYl
Offset of layer area from upper left corner of physical display.

2 x 14
signed

See figure 3-1 for an illustration of geometry.

6 Color space code
See section 3.12.1

4

7 Transparent color
The color (in logical color space) to be ignored for display

1…24

8 Transparency enable 1

9 Blink color (confirming to 6) 1…24

10 Blink alternative color (confirming to 6)
If a pixel in video RAM has a logical color equal to blink color, then it
is displayed alternating in blink color / alternative color. Either color
may also be the transparent color, in this case the pixel and the layer
below it are displayed alternatively.

1…24

11 Blink rate
of frames on, # of frames off

2 x 8

12 Blink enable 1
Page 162

G
raphic Processing U

nit

G
PU

 C
ontrol Inform

ation
Page 163

PX

P
Y

X, DY = domain size
X, WY = window size
X, PY = physical display size

OX b, OY b

X, FY = first pixel
X, OY = offset

Display

 and display coordinates.
31 0

Phys.
Addr. a

Phys.
Addr. b

WX a

WY a

WY b

WX b

DX b

DX a

D
Y

 b
D

Y
 a

D
W
P

FX b, FY b

FX a, FY a

OX a, OY, a

F
O

M
S

 b
M

S
 a

MS = minimal memory size = DX * DY / (PixelPerWord)

Memory physical Memory logical

Figure 3-1: Illustration for geometric relations between VideoRAM, layer coordinates

MB87J2120, MB87P2020-A Hardware Manual
3.2 Merging Description Record

This record contains all data needed to convert each logical layer into intermediate and physical color space,
together with appropriate handling of Z-order.

Table 3-2: Merging Description Record.

Information Size (bits)

1 Color Space Code
for intermediate color space

4

2 Layer to intermediate transfer codes (one per layer)
Flag to decide between two ways of transforming the layer’s logical color space
into the intermediate (common) color space. Maximal two legal ways are defined
for all combinations of logical to intermediate color space mapping (see section
2.3).

16 x 1

3 Z-order register
Contains a place for each layer concurrently displayed. This defines the Z-order,
i.e. the first place contains the number of the topmost layer, the second place the
number of the layer immediately below and so on (see fig. 3-2).

4 x 4

4 Plane enable
Flag to switch display of the respective plane on or off.

4

5 CLUT offsets (one per layer)
This offset is added to the pixel value when forming the address for look-up.

16 x 9

6 CLUT contents 256 x 1..24a

512 x 1..24b

7 Background color (confirming to intermediate color space)
The color to be displayed on locations where there is no pixel from any layer of
the video RAM. This allows to keep the visible layers as small as possible to save
RAM bandwidth yet still be able to control the appearance of the display back-
ground.

1…24

8 Background enable
This flag can be used to improve GPU performance when there is at least one
layer that covers the whole display area.

1

9 Pseudo level duty ratios
These give the values used by the duty ratio modulator to produce pseudo levels.
Since the modulator produces either 16 (4 bit to 1 conversion) or 3 x 4 (6 bit to 3
conversion) pseudo levels there is a maximum of 14 really modulated levels, two
are simply on and off level.

14 x 6

10 Pre-Matrix Biases (Jasmine only)
These values are added to Y, U, V before matrix multiplication

3 x 8

11 Matrix Coefficients (Jasmine only)
Factors for matrix multiplication, all treated as unsigned integer in the range of
0…2 (see 3.7.2).

9 x 8

12 Gamma Correction Table contents (Jasmine only)
Values used for Gamma correction after multiplication. Correction is done by
table look-up.

3 x 256 x 8

13 Gamma Table enable (Jasmine only)
Flag to directly map the matrix result into physical color space.

1

Page 164

Graphic Processing Unit
Remark: The purpose of the background color and Z-order register is a clearer concept of visibility, a more
user-friendly programming interface and a unified handling of all layers. If there was no Z-order register
the user still would be able to swap layers by changing their respective VideoRAM start addresses. How-
ever, this would require more accesses than the single access to the Z-order register.

3.3 Display Interface Record

This group of data contains information necessary to describe the geometric and timing behaviour of the
physical display as well as timing data to generate various synchronization signals.

14 RGB Gamma Forcing (Jasmine only)
Flag to force pixels from RGB555, RGB565, RGB888 through the gamma table,
valid only when gamma table enable is set.

1

15 YUV422 Chroma interpolation enable (Jasmine only)
Since in logical color space YUV422 two pixels share their chrominance infor-
mation linear interpolation between pairs of adjacent pixels is used to smooth the
appearance of the picture.

1

a. For MB87J2120 (Lavender).

b. For MB87P2020-A (Jasmine).

Table 3-3: Display Interface Record.

Information Size (bits)

1 Display physical size PX, PY 2 x 14

2 Color space code
For physical color space, see 3.12.1

4

3 Bit stream format code
Defines the number of bits written per video clock period (see section 3.12.2)

4

4 Scan mode
Distinction between single / dual scan, special “Optrex-mode”

2

Table 3-2: Merging Description Record. (Continued)

Information Size (bits)

Plane 3

[Layer a]

[Layer b]

Foreground

Background

Plane 2

Plane 1

Plane 0

Layer b

[Layer c]

Z-order register background color

[empty]
Layer a

Layer c

Figure 3-2: Illustration for Z-order register.
GPU Control Information Page 165

MB87J2120, MB87P2020-A Hardware Manual
5 Display mode
Distinction between single and twin display mode.

1

6 R/B Swap
Flag to allow for a swap between red and blue channel for RGB111 color
space, only useful for bit stream formats S4 and S8

1

7 Physical width in scan dots
= PX*BitsPerPixel / BitsPerScanClock

14

8 Dual Scan Offset
Distance between the two lines which are concurrently output.

14

9 External Sync Control
Control bits to define reactions on external sync signals, see 3.9

4

10 Master Timing Definition
Positional parameters to control output and sync signal generation, see 3.9

6 x 15

11 Sync Pulse Generator Control
Position parameters for pulse generators, see 3.10.2

6 x 4 x 31

12 Sync Sequencer Control
Parameters for sequence-based signal generation, see 3.10.3

64 x 32 +
5

13 Sync Mixer Control
Parameters that control the final generation of sync signals from merged pulse
generator and sync sequencer outputs, see 3.10.4

8 x 47

14 Sync Switch
Half cycle delay on/off flag for each sync mixer output

8

15 Pixel Clock Gate Control
Bits to determine clock gating, divider and gating type, see 3.11

4

16 Color Key Limits
Upper and lower color limit for which a match signal is generated, confirming
to color space

2 x 3 x
1…8

17 Color Key Polarity
Selects whether match signal is low or high active

1

18 Blank Clamping Values
Values that are output at analog and digital outputs when blanking is active (no
pixel data is output)

1 x 1..24a

2 x 1..24b

19 Main Output Enable Flags
Bits to control tristate drivers for display signals

29

a. Lavender contains one clamping value for digital and analog output.

b. Jasmine contains two different clamping values for digital and analog output.

Table 3-3: Display Interface Record. (Continued)

Information Size (bits)
Page 166

Graphic Processing Unit
3.4 Supported Physical Color Space / Bit Stream Format
Combinations

Table 3-4 gives an overview on the legal physical color space / bits stream format combinations for the pri-
mary display. These are derived from the features of the supported displays. An analog output for S9…S12
is also possible in twin display mode (see next section).

3.5 Twin Display Mode

Twin Display Mode is only available for MB87P2020-A (Jasmine). MB87J2120 (Lavender) does not sup-
port this feature.

The GPU offers the opportunity to run a digital and an analog display in parallel (to output according data
at digital and analog output pins, respectively). This is referred to as twin display mode and may be used to
concurrently output the picture and post-processing it (e.g. do some color keying). The implication, how-
ever, is that both data streams use identical resolutions and sync timing. Some sync signals may not be avail-
able at the multipurpose pins as well (see 3.14.1). In twin display mode one display becomes the primary
display, the other the secondary display. The distinction which display is primary depends on the bit stream
format as shown in table 3-5.

When the analog display is secondary pixel data are auto scaled to 8 bit per color channel for DAC outputs
to maintain full voltage swing (bit with at the digital outputs remains according to selected bit stream for-
mat). This auto scaling works as explained for bit expansion in 2.3.

Table 3-4: Supported combinations of physical color space to bit stream format

Physical color
space codes

Bit stream format code

S1 S2 S4 S6 S8 S9 S12 S18 S24 AN

1bpp x x x

RGB111 x x x

4bpp x x

RGB333 x

RGB444 x

RGB666 x

RGB888 x x

Table 3-5: Primary / secondary display distinction in twin display mode

Bit stream format Primary display Secondary display

AN Analog Digital

S9…S24 Digital Analog

Others Digital No twin display mode available.
GPU Control Information Page 167

MB87J2120, MB87P2020-A Hardware Manual
3.6 Scan Modes

Three scan modes are supported and determine the sequence pixel data that form the bit streams being out-
put. Figure 3-3 gives an illustration on geometrical reference points on the display used later to describe the
according bit streams.

4. Single Scan:
Pixels are written in one continuous stream, starting at upper left corner, proceeding left to right, line
by line.

5. Dual Scan:
Pixels are written in two parallel streams. The first stream starts at the upper left corner, proceeding
left to right, line by line. The second starts at the left margin of the line defined by DualScanOffset
(usually PY/2), proceeding left to write, line by line. Each stream contains DualScanOffset lines, i.e.
the stream for the upper display segment determines the number of lines

6. Zigzag Scan:
aka “Optrex-mode”. Pixels are written in one stream, starting at the upper left corner, proceeding
from left to right, however, line number sequence is peculiar: every other line number is biased with
DualScanOffset, i.e. the first line written is line #0, the second line is line number DualScanOffset,
the third line written is line #1, the fourth line written is line #(DualScanOffset+1) etc.

Table 3-6 shows the resulting bit streams according to the different scan modes. Please note that these
streams, as well as the reference points in figure 3-3 count in scan dots, which are not necessarily pixels
(this is determined by the bit stream format). A scan dot consists of all bits output during on display clock
cycle and may contain the bits of more than one pixel or even bits from fractions of adjacent pixels.

[1, DualScanOffs−1]

[PXScanDots−1, DualScanOffs−1]

[PXScanDots−1, PhysSizeY−1]

[PXScanDots−2, PhysSizeY−1]

[PXScanDots−2, DualScanOffs−1]

[0, DualScanOffs−1]

[0, 0]

[1, 0] [PXScanDots−2, 0]

[PXScanDots−1, 0]

[1, 1]

[1, 0]

[PXScanDots−2, 1]

[PXScanDots−1, 1]

[1, PhysSizeY−1]

[0, PhysSizeY−1]

[1, DualScanOffs]

[0, DualScanOffs]

[PXScanDots−2, DualScanOffs]

[PXScanDots−1, DualScanOffs]

Figure 3-3: Geometric reference points on the display.
Page 168

G
raphic P

rocessing U
nit

G
P

U
 C

ontrol Inform
ation

P
age 169

ted differently, one row is equivalent to one display clock cycle.

Zigzag Scan Note

a

[0, 0] b

[1, 0]

anOffs] [PXScanDots-2, 0]

anOffs] [PXScanDots-1, 0] c

[0, DualScanOffs] d

[1, DualScanOffs] e

[2, DualScanOffs]

nOffs+1] [PXScanDots-1, DualScanOffs]f

g

[0, 1]

[1, 1]

nOffs+2] [PXScanDots-2, 1]
Table 3-6: Bit stream output sequence according to scan mode, given as [x, y] pairs. Where not sta

Single Scan Dual Scan

Upper Stream Lower Stream

0…n cycles optional blanking (vertical and horizontal)

[0, 0] [0, 0] [0, DualScanOffs]

[1, 0]] [1, 0] [1, DualScanOffs]

…

[PXScanDots-2, 0] [PXScanDots-2, 0] [PXScanDots-2, DualSc

[PXScanDots-1, 0] [PXScanDots-1, 0] [PXScanDots-1, DualSc

0…n cycles optional blanking (horizontal)

[0, 1] [0, 1] [0, DualScanOffs+1]

[1, 1] [1, 1] [1, DualScanOffs+1]

…

[PXScanDots-1, 1] [PXScanDots-1, 1] [PXScanDots-1, DualSca

0…n cycles optional blanking (horizontal)

[0, 2] [0, 2] [0, DualScanOffs+2]

[1, 2] [1, 2] [1, DualScanOffs+2]

…

[PXScanDots-2, 2] [PXScanDots-2, 2] [PXScanDots-2, DualSca

M
B

87J2120, M
B

87P
2020-A

 H
ardw

are M
anual

P
age 170

sertion.

alScanOffs+2] [PXScanDots-1, 1]

[0, DualScanOffs+1]

fs+3] [1, DualScanOffs+1]

fs+3] [2, DualScanOffs+1]

*DualScanOffs-1] [PXScanDots-2, DualScanOffs-1]

*DualScanOffs-1] [PXScanDots-1, DualScanOffs-1]h

tical) i

berlScanOffs

r zigzag scan

ot stated differently, one row is equivalent to one display clock cycle.

Zigzag Scan Note
Please refer to section 3.9 for a more detailed explanation of display timing, especially blanking in

[PXScanDots-1, 2] [PXScanDots-1, 2] [PXScanDots-1, Du

0…n cycles optional blanking (horizontal)

[0, 3] [0, 3] [0, DualScanOf

[1, 3] [1, 3] [1, DualScanOf

…

…

[PXScanDots-2, PhysSizeY-1] [PXScanDots-2, DualScanOffs-1] [PXScanDots-2, 2

[PXScanDots-1, PhysSizeY-1] [PXScanDots-1, DualScanOffs-1] [PXScanDots-1, 2

0…n cycles optional blanking (horizontal and ver

a. leading blanking before start of active frame area

b. leftmost scan dot of topmost line (start of active display area)

c. rightmost scan dot on first line, last scan dot of horizontal cycle for single and dual scan

d. trailing horizontal blanking after first line for single and dual scan,
for zigzag scan there isno blanking between rightmost scan dot of topmost line and leftmost scan dot of line numDua

e. start of second line (leftmost scan dot) for single and dual scan

f. rightmost scan dot on second line for single and dual scan,
for zigzag scan this is rightmost scan dot on line number DualScanOffs, i.e. last scan dot of horizontal cycle fo

g. trailing horizontal blanking

h. last scan dot of last line, end of active display area

i. trailing horizontal and vertical blanking

Table 3-6: Bit stream output sequence according to scan mode, given as [x, y] pairs. Where n

Single Scan Dual Scan

Upper Stream Lower Stream

Graphic Processing Unit

0-A

the
matic

and

(Cb)

is re-
X)

isplay
y ig-

does
arriv-

mproved
. This

ce,

lete
3.7 YUV to RGB conversion

Full support for YUV to RGB conversion as described in this section is only available for MB87P202
(Jasmine).

MB87J2120 (Lavender) is able to handle YUV444 and YUV422 in a limited manner. It simply ignores
color components of the color value and displays it in 256 step grayscale format also called ’achro
mapping’.
This behaviour is also available for Jasmine as alternative mapping for YUV422, YUV444, YUV555
YUV655.

3.7.1 YUV422 Demultiplexing and Chrominance Interpolation

The YUV422 format is special in the respect that it implies chroma sub-sampling and distribution of U
and V(Cr) values on every other pixel (see figure 3-4 below).

Therefore, pairs of pixels have to be fetched from memory to obtain complete color information. Th
sults in the constraints that layer’s horizontal first pixels (FX) as well as their horizontal window size (W
must not be odd. Due to internal processing of pixels in portions of display segments the horizontal d
offset (OX) is also limited to even positions. These restrictions are enforced automatically by GPU b
noring the LSBs of the parameters mentioned before.

In order to process the YUV422 format in the matrix (see next section) the PixelPump within the DFU
the necessary demultiplexing to assign each pixel the complete chrominance information, i.e. pixels
ing at the matrix have the structure shown in figure 3-5.

The effect of chrominance sub sampling can be decreased and hence the appearance of the image i
by applying a linear interpolation between consecutive chrominance values as illustrated in figure 3-6
interpolation is controlled by a configuration register.

Luminance … … 8 bits each

Chrominance … … 8 bits each

Figure 3-4: Memory map for pixels in YUV422 format. Pixels on even positions carry U-chrominan
those on odd positions V-chrominance,

Luminance … … 8 bits each

Chrominance … … 8 bits each

… … 8 bits each

Figure 3-5: Pixel structure after YUV422 demultiplexing. Although now each pixel is assigned comp
chrominance information there is still a chrominance sub sampling

Y 2i 2– Y 2i 1– Y 2i Y 2i 1+ Y 2i 2+ Y 2i 3+

U2i 2– V 2i 2– U2i V 2i U2i 2+ V 2i 2+

Chroma2i 2– Chroma2i Chroma2i 2+

i 0 1 2 …, , ,=

Y 2i 2– Y 2i 1– Y 2i Y 2i 1+ Y 2i 2+ Y 2i 3+

U2i 2– U2i U2i 2+

V 2i 2– V 2i V 2i 2+
GPU Control Information Page 171

MB87J2120, MB87P2020-A Hardware Manual

ces
nfig-

fol-

nge of

out-
apped

spac-
44 in
t ex-

cal-
ith the

e de-
lish the
s-
3.7.2 Matrix Multiplication

GPU incorporates a YUV to RGB Matrix with prebiasing to convert pixels in YUV (YCbCr) color spa
to RGB color spaces. To flexibly adjust to different input standards, all matrix coefficients can be co
ured. The following equation is calculated for the YUV to RGB conversion:

(6)

All matrix coefficients are derived from their respective configuration registers in either of the

lowing ways:

a) Chroma coefficients for green channel and :

(7)

b) all others:

(8)

That is, all configuration registers are treated as 8 bit unsigned binary numbers, thus resulting in a ra
–2…0 for coefficients and and 0…2 for all other coefficients. AllPreBias values are stored as 8

bit signed binary numbers in their configuration registers (cf. table 4-1).

The calculated intensity values for R, G and B are limited to 8 bit positive binary numbers with values
side the legal range being clipped to the respective margins, i.e. underflows (negative values) are m
to zero, overflows (values >255) to 255.

Note: There is only one set of matrix parameters (pre biases and coefficients) for all layers. YUV color
es with less than 8 bits per channel (i.e. YUV555 and YUV655) are therefore auto scaled to YUV4
advance to fit into a unified value range for all YUV color spaces. This scaling works similar to tha
plained for the mapping from logical to intermediate color spaces in section 2.3.

3.7.3 Inverse Gamma Correction

When processing YUV material originally produced for display on CRTs color channel intensities are
culated according to equation (6) may be distorted by a gamma function according to (9) to cope w
non linear electro-optical characteristics of the CRT’s phosphorus.

(9)

with Imtx being the intensity of one color channel according to equation (6),Iactthe actual (linear) intensity,

c andI0 constants and . However, a linear representation (i.e. no gamma distortion) might b
manded. Therefore, GPU includes three gamma look-up tables (one per color channel) to accomp
inverse transformation to obtainIact from Imtx as well as any other (possibly non linear) post-matrix tran

Luminance … …

Chrominance … …

… …

Figure 3-6: Pixel structure after linear chrominance interpolation

Y 2i 2– Y 2i 1– Y 2i Y 2i 1+ Y 2i 2+ Y 2i 3+

U2i 2– U2i 2– U2i+

2

U2i U2i U2i 2++

2

U2i 2+ U2i 2+ U2i 4++

2

V 2i 2– V 2i 2– V 2i+

2

V 2i V 2i V 2i 2++

2

V 2i 2+ V 2i 2+ V 2i 4++

2

Rmtx

Gmtx

Bmtx

 CYR CUR CVR

CYG CUG CVG

CYB CUB CVB

 Y PreBiasY+

U PreBiasU+

V PreBiasV+

×=

C ij Pij

CUG CVG

C ij Pij 128⁄()–=

C ij Pij 128⁄()=

CUG CVG

Imtx c Iact
γ I0+⋅=

γ 2.2≈
Page 172

Graphic Processing Unit

inverse

ial dis-
il-
GB

ovide
ion in

seudo
es only.
e gray

for all
lack or
tio be-

pixels
ack or
et to

levels
is in-

frame
very
due

ments
. One
longer

on and
tively.
ivalent

100Hz
ivalent
ethod
arly
bution

gned
on

draw
formation. This is done by loading the gamma tables with the appropriate contents. For instance, the
gamma correction would require the contents of addressImtx to be:

(10)

In a different application the gamma look-up tables might be used to adopt RGB color spaces to spec
play characteristics. This is referred to asRGB gamma forcing. In this case, the gamma tables are not ava
able for YUV gamma correction anymore, although the matrix still can be used for YUV to R
conversion.

3.8 Duty Ratio Modulation

3.8.1 Working Principle

This paragraph briefly describes the Duty Ratio Modulator integrated. The purpose of this unit is to pr
additional (pseudo-) levels (shades of hue or gray) for output, i.e. virtually expand the color resolut
the physical color space. This is achieved by tuning the duty ratio of actually existing physical bits.

Assume there is a frame rate of 100 Hz on a black and white display (1 bit physical color space). P
gray levels can be obtained when pixels are not set black all 100 frames per second but say 80 fram
Thus, the pixel is seen in dark gray instead of black. The less time a pixel is set to black the lighter th
becomes. This is equivalent to modulating the duty ratio of the pixel signal.

Vertical sync (i.e. the frame rate) is used to modulate the pixels, since this signal must be common
pixels on display because otherwise artefacts may occur. If the decision whether to set a pixel to b
white to obtain the desired pseudo gray level is made e.g. on a line-by-line basis it depends on the ra
tween the number of lines and the set pseudo gray level where (geometrically on the display) “gray”
are set to black or white. Unsuitable settings could then cause actually “gray” pixels to stay either bl
white or visibly flicker. Therefore, all “gray” pixels of the frame of the same pseudo gray level are s
the same physical value of either black or white to achieve a unified optical impression.

The number of frames constituting a basic modulation period depends on the number of pseudo gray
desired and on the linearity of the display characteristics. For instance, if just black, white and gray
tended the basic modulation period might be limited to two frames. Black pixels are set black every
(100% duty ratio), white pixels are not set black at all (0% duty ratio) and “gray” pixels are set black e
other frame (50% duty ratio). However, the “gray” optically perceived might not be 50% black. This is
to a possibly nonlinear electro-optical characteristics of the display. In order to cope with this adjust
must be made possible. An optically 50% black might be achieved with a 60% duty ratio, for instance
should be able to adjust the duty ratio with an accuracy of some percent (5 or 6 bits precision). Hence,
periods i.e. more frames (30…100) are needed.

When using a basic period of e.g. 100 frames a 50% duty ratio is equivalent to an overall 50 frames
50 frames off. This implies no statement about when to display the pixel as active and inactive, respec
Setting the pixel first for 50 frames active and afterwards the next 50 frames inactive seems to be equ
to setting the pixel active every other frame.

Unfortunately, this is not the case in general. Most displays feature a frame rate in the magnitude of
which means that the modulation period of 100 frames lasts for one second. Both methods are equ
only for displays slow enough to integrate over this rather long period. On faster displays the first m
(simple pulse width modulation with 50 consecutive frames activity) will cause a blinking of 2 Hz cle
visible for the human eye. Consequently, a simple pulse width modulation is inadequate and a distri
of on and off values as even as possible is required.

This is achieved using a derivation of Bresenham’s line algorithm. This algorithm was originally desi
to draw a line from point to point on a lattice of discrete pixels with minimal deviati

from the ideal graph . The basic idea is to scan the distance step by step and

pixels at appropriatey-values using a so-called decision variable. This variable tells for a given

whether to draw the pixel on or .

Iact Imtx[] Imtx I0–() c⁄()1 γ⁄= =

A xa ya,() B xb yb,()

y m x n+⋅= ∆X xb xa–=

x k 1+()
x k 1+() y k()(,) x k 1+() y k() 1+(,)
GPU Control Information Page 173

MB87J2120, MB87P2020-A Hardware Manual

ed to

ham’s

and

ter-
either

ped to
reted

uced by
. Table

duty

idually
us al-

hannel,
. Table

 duty
For the application within the GPU there are some simplifications: The basic equation is reduc
, with y representing the activity,x the modulation period and slopem the desired duty ratio. Fur-

ther, the distance can be limited to a power of 2. The value of the decision variable from Bresen

algorithm distinguishing between and immediately tells when to set the signal active
when inactive.

3.8.2 Usage

As listed in Table 2-2, there are two mappings for which the Duty Ratio Modulator is applied: from in
mediate 4bpp to physical 1bpp and for intermediate RGB222 to physical RGB111. Usage differs for
case since a different number of pseudo levels is required.

Mapping from intermediate 4bpp to physical 1bpp

In this case there is a total of 16 different pixel values in intermediate color space which need be map
a total of only two different pixel values in physical color space. The 16 intermediate values are interp
as gray scale, thus representing black, white and 14 levels of gray. These 14 levels have to be prod
the DRM. The duty ratios used for this 14 pseudo levels are given in GPU registers (see chapter 4)
3-7 gives the assignment between pixel value and pseudo levels.

Please note that for a given DRM its output is either one or zero at any given time. What differs is the
ratio, which is adjustable via GPU register.

Mapping from intermediate RGB222 to physical RGB111

In this case the pixel value is interpreted as three color channels R, G, and B which are mapped indiv
from intermediate to physical color space. Each intermediate color channel has a width of 2 bits, th
lowing four different values. As a whole, intermediate RGB222 can represent 64 different colors.

However, since each color channel is regarded separately, there are only two pseudo levels per c
since the other two are constant on and off, respectively. Thus, a whole of six modulators is needed
3-8 gives the assignment for this case.

Table 3-7: Assignment between pixel values in intermediate and physical color space when using
ratio modulation for mapping from intermediate 4bpp to physical 1bpp.

pixel value pixel value

interm. phys. interm. phys.

0 constant off 8 DRM 7 output

1 DRM 0 output 9 DRM 8 output

2 DRM 1 output 10 DRM 9 output

3 DRM 2 output 11 DRM 10 output

4 DRM 3 output 12 DRM 11output

5 DRM 4 output 13 DRM 12 output

6 DRM 5 output 14 DRM 13 output

7 DRM 6 output 15 constant on

y m x⋅=

∆X

y k() y k() 1+
Page 174

Graphic Processing Unit

ported.
y sepa-
sig-

es a

air of
as co-
ing be-

(
those

 duty
3.9 Master Timing Information

The generation of the correct timing is a rather complex issue, due to the great variety of displays sup
Therefore, a coherent, flexible and easy-to-use approach is extremely important. This is achieved b
rating the GPU internal timing (for fetching and bit stream generation) from external timing (for sync
nals).

The main timing frame for all display types is completely defined by four or six values. Fig. 3-7 giv
geometrical interpretation of the four primary values.

The general idea is to assign every scan dot (i.e. the bits written during one display clock cycle) a p
integer numbers, one for the horizontal and one for vertical timing, thus representing display timing
ordinates within a two-dimensional scan area. X-values smaller than zero represent horizontal blank
fore visible pixels, X-values greater than or equal toPXScanDots horizontal blanking after visible pixels.
Active display area (i.e. visible pixels, either background or layer) is designated by values from 0 toPX-
ScanDots - 1). The same applies toY-values. Those below zero designate leading vertical blanking,
greater than or equal toPY trailing vertical blanking, and those between zero and (PY - 1) visible lines.

Table 3-8: Assignment between pixel values in intermediate and physical color space when using
ratio modulation for mapping from intermediate RGB222to physical RGB111.

pixel value

channel R channel G channel B

interm.,
bits [5:4]

phys.,
bit [2]

interm.,
bits [3:2]

phys.,
bit [1]

interm.,
bits [1:0]

phys.,
bit [0]

0 constant off 0 constant off 0 constant off

1 DRM 4 output 1 DRM 2 output 1 DRM 0 output

2 DRM 5 output 2 DRM 3 output 2 DRM 1 output

3 constant on 3 constant on 3 constant on

xstart

Single Scan Dual Scan

P
Y

 =
 S

eg
m

en
t Y

ystop+DualScanOffs

ystart+DualScanOffs

xstop xstart xstop

ystart

ystop

DualScanOffs

P
Y

PX ScanDots PX ScanDots

ystop

ystart

Active Display DataActive Display Data

Blanking

BlankingBlanking

Figure 3-7: Interpretation of main timing parameters in relation to geometrical parameters of the
physical display.
GPU Control Information Page 175

MB87J2120, MB87P2020-A Hardware Manual

ber of
rlaced

remain

scrip-
ters are

nd the
ent).

ling is
f four

ly.

ly the
e pixel

ignals
ed in
to form

cle.

ion as

e by
There is a special case: TV-conform timing requires that every other frame consists of an odd num
lines to achieve an odd sum of lines for two consecutive frames (representing the two fields of an inte
TV picture). Therefore, an additional coordinate had to be introduced, referred to asfield bit, thus actually
expanding the coordinate space to three dimensions. Even for this case the number of visible pixels
constant, what differs is the number of blanking lines.

These “timing coordinates” form the basis for all timing-related signal generation. For a complete de
tion a maximum six timing and three geometrical parameters are necessary. The geometrical parame
the number of scan dots in each direction, i.e. the area with visible pixels on the physical display, a
extraDualScanOffs parameter for dual scan displays (i.e. the number of lines of each display segm

The number of necessary timing parameters is either four or six, depending whether or not field togg
enabled (i.e. frames with differing number of blanking lines are used). For normal operation a set o
timing parameters is sufficient:xstart, xstop, ystart, andystop. The “timing coordinates” men-
tioned above cover a range from [xstart, ystart] to and including [xstop, ystop]. If field toggling
is used, then there is a pair of (ystart, ystop) values for every frame type, which is used alternative

This explanation applies also to dual scan displays with the distinction that the Y values describe on
upper display segment, the lower segment simply is assigned the same timing (since its respectiv
stream is output in parallel to the upper segment).

3.10 Generation of Sync Signals

3.10.1 Overview

To achieve maximal flexibility, generation of sync signals is a three stage approach. In a first stage, s
are generated which carry positional timing information (according to the timing coordinates describ
the section before). There are two methods to obtain these signals. The second stage combines them
more complex waveforms. The third stage is used for a programmable delay of half a pixel clock cy

During display operation the sync generating components are provided with the current timing posit
integer numbers in 2’s complement representation.

3.10.2 Position Matching

One way to form first-stage signals is a simple position matching to trigger an RS-flip-flop. This is don
an array of six identical sync pulse generators (SPGs). Fig. 3-8 shows the working principle.
Page 176

Graphic Processing Unit

ramma-
Off-
of the

uenc-

sitions
e RAM,
The output of a sync pulse generator is set or reset if the current position equals the respective prog
ble position in all bits for which its don’t-care-vector (which is also programmable) contains zeros.The
matching is dominant, i.e. when both, On and Off position are matched at the same time, the output
sync pulse generator is reset.

3.10.3 Sequence Matching

A more sophisticated yet more powerful approach to form first-stage signals is the application of a seq
er RAM to match a whole sequence of positions. Fig. 3-9 shows the principle of operation.

There is one sync sequencer (SyncSeq) which is able to follow an arbitrary sequence of timing po
and generate an appropriate output signal. The length of the sequence as well as the contents of th
consisting of position and the assigned output value are programmable.

F YX 14 0 14 0

F YX 14 0 14 0

F YX 14 0 14 0 F YX 14 0 14 0

F YX 14 0 14 0

== ==

match position OFF

don’t-care vector OFF don’t-care vector ON

match position ON

S

R

SPG out

current position

timing coordinate space

xstart xstop

ystart

ystop

Figure 3-8: Matching positions with sync pulse generators.
GPU Control Information Page 177

MB87J2120, MB87P2020-A Hardware Manual

e first
dress
match.
the last

possible
ngth).

in more
mixers

olean
The operation is as follows: At the begin, the address counter is reset to zero and the RAM outputs th
position to match and the output value for this position. If the comparator signals a match, the RAM ad
is incremented, the preset output value is propagated and the RAM now outputs the next position to
This match/address increment cycle continues until the programmed sequence length is reached. If
position is matched, the address counter is reset to zero again and the cycle starts anew. It is thus
to generate arbitrarily complex waveforms with up to 64 edges (which is the maximum sequence le

3.10.4 Combining First-Stage Sync Signals

As shown above, there are six sync pulse generator outputs and one sync sequencer output. To obta
complex waveforms, these signals can be combined in a second stage. Here, an array of eight sync
(SMx) is used to calculate Boolean functions of first-stage signals. Each sync mixer can form any Bo
function of up to five inputs. The basic structure of one such mixer is depicted in fig. 3-10

F YX 14 0 14 0

==

current position

Addr
Incr. RAM

Sequencer out

enable

xstart xstop

ystart

ystop

timing coordinate space

Sequencer

next position to match

Figure 3-9: Matching whole sequences of positions with the Sync Sequencer.
Page 178

Graphic Processing Unit

are se-
n table

all form

s.
zero by
wn in

r
ut-
The concept of the sync mixers needs some explanation. In a first step the signals to be combined
lected. These are referred to then as S0…S4 and form the address for the function table. This functio
is used to look up the result of the Boolean operation the five selected signals shall be subject to.

An example may help understand the topic. Assuming the outputs of three Sync Pulse Generators sh

a combined signal with the function , one would proceed as follow
At first, the Sync Mixer signals S0…S4 are assigned the Sync Pulse Generator outputs or constant
programming the respective multiplexers. The next step is to build the function’s truth table, as sho
table 3-9. Since the intended function has only three inputs, only eight entries need be specified.

S3
S2
S1
S0

S4

SyncMixer out

Ctrl
Reg

Mux
8 to 1

Ctrl
Reg

Mux
8 to 1

Ctrl

Mux
8 to 1

Ctrl
Reg

Mux
8 to 1

Reg

Mux

08162431

8 to 1

Const 0
SyncSeq
SPG0
SPG1
SPG2
SPG3
SPG4
SPG5

FctTable

Mux 32 to 1Reg
Ctrl

Figure 3-10: Basic structure of a Sync Mixer. Each of the five address lines of the 32 to 1 multiplexe
can be individually selected from any of the seven (plus one constant zero) first-stage signals. The o
put is the result of a table look-up. The registerFctTable contains the truth table of the Boolean
function calculated.

SMx SyncSeq SPG0 SPG1∧ ∧=
GPU Control Information Page 179

MB87J2120, MB87P2020-A Hardware Manual

ke the
w is

mple
et

a pro-
l clock

ync

ram-
3-11
ontrol
lock.
time
It is recommended that S4…S0 are listed in order of binary number representation. This allows to ta
function result row immediately as register contents for the Sync Mixer function table, i.e. the last ro
interpreted as binary 32 bit number with the LSB in the first row and the MSB in the last. For the exa
this would be [xxxx xxxx xxxx xxxx xxxx xxxx 0000 1000] binary, with x’s denoting arbitrarily set or res
bits, since these will never be read out of the function table.

3.10.5 Sync Signal Delay Adjustment

Before the outputs of the eight Sync Mixers are connected to actual GDC pins, they are fed through
grammable delay stage. This allows the signals either to be left untouched or delayed for half a pixe
cycle. This delay can be set for each of the eight Sync Mixer output signals individually with the S
Switch register.

3.11 Pixel Clock Gating

The GPU allows to flexibly shape the pixel clock output at the respective pin. This is done with a prog
mable control register that defines how the output of Sync Mixer 7 affects the output pixel clock. Fig.
shows the resulting waveforms according to gate control settings. It should be mentioned that the c
by the mixer output is the only way to determine the position of clock edges when using the divided c
If the output clock is not gated, but divided, then the first rising clock edge occurs exactly at the same
with the first rising edge of the pure internal pixel clock after reset.

Table 3-9: Function table for the Sync Mixer example.

Selected First-stage Signals Desired Output

S4 = 0 S3 = 0 S2 = SPG1 S1 = SPG0 S0 = SyncSeq SMx = f(S0….S4)

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 0 1 1 1

0 0 1 0 0 0

0 0 1 0 1 0

0 0 1 1 0 0

0 0 1 1 1 0

Combinations [S4…S0] = 10000…11111 can never occur since S4 and
S3 are selected constantly zero

need not be specified
Page 180

Graphic Processing Unit

infor-
3.12 Numerical Mnemonic Definitions

3.12.1 Color Space Code

This code is intended to designate color resolutions in the different color spaces uniquely. It provides
mation on the current color space as well as for transformations between these spaces.

Table 3-10: Color space code definitions

Code Color Space Code Color Space

Mnemonic Bits occupied Mnemonic Bits occupied

0 1bpp 1 8 YUV444 32

1 2bpp 2 9 RGB111 2

2 4bpp 4 10 RGB222 6

3 8bpp 8 11 RGB333 9

true

clock polarity

gating enable

gating type

clock divider

or

or

or

or

and

and

and

and

x

x

x

x

off

off

off

off

inv

inv

true

true

1:2

1:1

1:2

1:1

gating singal

internal display clock

inv

inv

true

1:1 true

on

on

1:1 true

1:1

1:2

inv

on

1:2

on

1:1 inv

1:2

1:2

on

on

on

on
GPU Control Information Page 181

MB87J2120, MB87P2020-A Hardware Manual

e pix-

tten in
3.12.2 Bit Stream Format Code

This code describes number of bits actually written to the display (some displays require more than on
el written at once).

3.12.3 Scan Mode Code

This code determines the scan mode of the display, i.e. the number and layout of pixel streams wri
parallel to the physical display.

4 RGB555 16 12 RGB444 12

5 RGB565 16 13 RGB666 18

6 RGB888 32 14 YUV555a 16

7 YUV422 16 15 YUV655a 16

a. This format is only available for MB87P2020-A (Jasmine).

Table 3-11: Bit stream format code definitions

Code Bit stream Code Bit stream

Mnemonic Bits written Mnemonic Bits written

0 S1 1 6 S12 12

1 S2 2 7 S18 18

2 S4 4 8 S24 24

3 S6 6 9 AN analog output

4 S8 8 10-15 reserved

5 S9 9

Table 3-12: Scan mode definitions.

Code 0 2 3 1

Mnemonic SglScan DualScan Zzagscan illegal

Table 3-10: Color space code definitions

Code Color Space Code Color Space

Mnemonic Bits occupied Mnemonic Bits occupied
Page 182

Graphic Processing Unit

idth
ysical

he de-
3.13 Bit to Color Channel Assignment

Table 3-13 gives the assignment of the bits to color channels (RGB or YUV) corresponding to bit w
(i.e. the number of bits occupied by one pixel) as used GPU internal for chromatic intermediate and ph
color spaces. This assignment is important for direct mapping (to determine which GDC pins carry t
sired signal) and for CLUT and gamma table loading.

Table 3-13: Bit to RGB/YUV assignment for chromatic color spaces.

Color
space

Bits assigned to

R G B Y U(Cb) V(Cr)

RGB111a

a. Default assignment with no R/B swap

[2] [1] [0]

RGB111b

b. Alternative assignment with active R/B swap

[0] [1] [2]

RGB222 [5:4] [3:2] [1:0]

8bppc

c. This assignment is valid only when 8bpp is mapped aligned to intermedi-
ate RGB333

[7:5] [4:2] [1:0]

RGB333 [8:6] [5:3] [2:0]

RGB444 [11:8] [7:4] [3:0]

RGB555 [15:11] [10:6] [4:0]

RGB565 [15:11] [10:5] [4:0]

RGB666 [17:12] [11:6] [5:0]

RGB888 [23:16] [15:8] [7:0]

YUV422d

d. Bits [7:0] contain U and V alternating for every other pixel.

[15:8] [7:0]

YUV444 [15:8] [7:0] [23:16]

YUV555e

e. This format is only available for MB87P2020-A (Jasmine).

[10:6] [4:0] [15:11]

YUV655e [10:5] [4:0] [15:11]
GPU Control Information Page 183

MB87J2120, MB87P2020-A Hardware Manual

depends

_RED,
lamp

olors

-
f

ers

by
3.14 GPU Signal to GDC Pin Assignment

3.14.1 Multi-Purpose Digital Signals

Some GDC pins are shared by GPU signals, since pins are a limited package resource. This sharing
on the physical display connected to GDC. Table 3-14 shows the assignments.

3.14.2 Analog Pixel Data

If scan mode is set toSglScan and bit stream format isAN (analog display is primary) or twin display
mode (Jasmine only) is active and bit stream format is S9…S24 (analog display is secondary), pins A
A_GREEN, and A_BLUE carry analog pixel data, i.e. colors or gray scales as well as the blanking c
value, otherwise they are high-Z. They are high-Z as well when the DAC output enable bit is reset.

3.14.3 Dedicated Sync Signals

Three pins for dedicated sync signals are available. Table 3-15 gives the assignment.

Table 3-14: GPU multi-purpose digital signal to GDC pin assignment. Pixel data designates actual c
or gray scales as well as the blanking clamp value.

GDC pin GPU signal usage

a) Display with scan mode SglScan

DIS_D[23:19] Digital pixel data [23:19] when bit stream format is either S24, or AN and twin dis
play mode active (digital display is secondary), otherwise delay adjusted outputs o
Sync Mixer 7…3

DIS_D[18:0] Digital pixel data

b) Display with scan mode DualScan

DIS_D[23:19] Delay adjusted outputs of Sync Mixer 7…3

DIS_D[18:16] Constant zero

DIS_D[15:8] Lower display segment digital pixel data

DIS_D[7:0] Upper display segment digital pixel data

c) Display with scan mode ZzagScan

DIS_D[23:19] Delay adjusted outputs of Sync Mixer 7…3

DIS_D[18:8] Constant zero

DIS_D[7:0] Digital pixel data

Note 1: For cases with DIS_D[23:19] being not connected to the delay adjusted outputs of Sync Mix
3 to 7 these signals are not available at GDC pins.
Note 2: Independent of the GPU signals being connected to the pins their output is further controlled
the respective output enable settings.

DIS_PIXCLK When used as output the pin carries the pixel clock as formed due to gating and
divider settings (cf. 3.11)

Table 3-15: GPU sync signal to GDC pin assignment.

GDC pin GPU signal usage

DIS_HSYNC This pin is always connected to the delay adjusted output of Sync Mixer 0.
Page 184

Graphic Processing Unit

n
draw-
iption

flash
t syn-

able

t lies
rther

per-

y of
3.14.4 Sync Mixer connections

Table 3-16 shows the mapping of sync mixer outputs to GDC pins or its internal connections.

Sync mixer 7 is used for pixel clock gating as already described in chapter 3.11.

Sync mixer 6 is connected to the flagFLNOM_GSYNC which can be used by an application to trigger on a
event regarding display output. For example with help of this flag an application can synchronize its
ing on display frame rate. It is also possible to generate a MCU interrupt with this flag (see ULB descr
for details about flags and interrupt handling).
Note that this connection is only available for MB87P2020 and MB87P2020-A.

Sync mixer 5 can be taken as synchronization input for the CCFL driver. This allows a flexible CCFL
rate synchronization with display output refresh rate. See CCFL description for further details abou
chronization settings.
Note that this connection is only available for MB87P2020-A.

Internal connections for sync mixers are always established independent from display settings.

3.14.5 Color Key Output

The GDC pin DIS_CK carries the output of the color key unit. It is high-Z when the respective output en
bit is reset.

Behaviour:

The output becomes active with a user-controlled polarity when data for visible pixels is output tha
within limits that are also defined by the user. It is inactive during blanking periods. The behaviour fu
depends on physical color space / bit stream format combinations:

• For combinations that lead to an output of one pixel per pixel clock, the output is updated on a
pixel basis.

DIS_VSYNC This pin is always connected to the delay adjusted output of Sync Mixer 1.

DIS_VREF This pin is always connected to the delay adjusted output of Sync Mixer 2.

Note: Although the pin names seem to imply a certain signal function this is not the case. In fact, an
the pins above can output any arbitrary waveform generated with the respective Sync Mixer.

Table 3-16: Sync mixer connections

Sync mixer GDC pin Internal connection

Sync mixer 0 DIS_HSYNC

Sync mixer 1 DIS_VSYNC

Sync mixer 2 DIS_VREF

Sync mixer 3 DIS_D[19]

Sync mixer 4 DIS_D[20]

Sync mixer 5 DIS_D[21] CCFL synchronization (MB87P2020-A only)

Sync mixer 6 DIS_D[22] FlagFLNOM_GSYNC (MB87P2020(-A) only)

Sync mixer 7 DIS_D[23] Clock gating

Table 3-15: GPU sync signal to GDC pin assignment.

GDC pin GPU signal usage
GPU Control Information Page 185

MB87J2120, MB87P2020-A Hardware Manual

with
metri-

ing
geo-

con-
• For combinations with more than one pixel per pixel clock cycle (either all complete pixels or
partial remainders, i.e. not all bits of one pixel are included) the output corresponds to the geo
cally leftmost complete pixel.

• For combinations with pixel clock cycles for which no complete pixel is output (instead remain
bits from the previous pixel clock and some bits of the next pixel) the output corresponds to the
metrically leftmost complete previous pixel.

The matching is done separately for each color channel. A pixel matches the key when the following
dition holds:

 AND

 AND

The pixel’s color channels are extracted automatically corresponding to the physical color space.

LimitRed, Lower PixelRed LimitRed, Upper≤ ≤

LimitGreen, Lower PixelGreen LimitGreen, Upper≤ ≤

LimitBlue / Mono, Lower PixelBlue / Mono LimitBlue / Mono, Upper≤ ≤
Page 186

Graphic Processing Unit

monic or
4 GPU Register Set

4.1 Description

Addresses are hexadecimal byte addresses in MCU address space, initial values are given as mne
hexadecimal, as appropriate. Bit slices are according to theword starting at addressAddr. Registers marked
in Lock are read-only duringDIR_MTimingOn set to 1.

Table 4-1: GPU Register Set(continued).

Mnemonic
(API-Names)

Addr

L
oc

k Function Initial
Value

Layer description record information

LDR0_PhAddr …
LDR15_PhAddr
PHA(i)

1000
…

103C

Layer 0 to Layer 15 physical address in VideoRAM
(These are actually SDC registers, included here for
completeness of layer description records only.)

undef.

LDR0_DomSz …
LDR15_DomSz
DSZ_X(i)

1040
…

107C

Layer 0 to Layer 15 domain size, i.e. size of whole
area covered by the layer
[29:16] = DX = width (unsigned integer)
(These are actually SDC registers, included here for
completeness of layer description records only.
There is no DY stored, it is the user’s responsibility
to provide sufficient RAM space for each layer.)

undef.

LDR0_1stPxl …
LDR15_1stPxl
DP1_X(i)
DP1_Y(i)

1080
…

10BC

Layer 0 to Layer 15 first pixel to be displayed, i.e.
offset within logical layer domain
[29:16] = FX (unsigned integer)
[13:0] = FY (unsigned integer)

undef.

LDR0_WinSz …
LDR15_WinSz
WSZ_X(i)
WSZ_Y(i)

10C0
…

10FC

Layer 0 to Layer 15 window size, i.e. size of visible
area
[29:16] = WX = width (unsigned integer)
[13:0] = WY = height (unsigned integer)

undef.

LDR0_Offs …
LDR15_Offs
WOF_X(i)
WOF_Y(i)

1100
…

113C

Layer 0 to Layer 15 display offset, i.e. offset from
upper left corner of physical display
[29:16] = OX (signed integer)
[13:0] = OY (signed integer)

undef.

LDR0_TrCol …
LDR15_TrCol
LTC(i)

1140
…

117C

Layer 0 to Layer 15 transparent color, i.e. color for
which a pixel is not to be displayed (= transparent)
[23:0] = color (according to color space)

undef.

LDR0_BlCol …
LDR15_BlCol
LBC(i)

1180
…

11BC

Layer 0 to Layer 15 blink color, i.e. color for which
a pixel is displayed either in this or blink alternative
color
[23:0] = color (according to color space)

undef.

LDR0_BlAlt …
LDR15_BlAlt
LAC(i)

11C0
…

11FC

Layer 0 to Layer 15 blink alternative color
[23:0] = color (according to color space)

undef.
GPU Register Set Page 187

MB87J2120, MB87P2020-A Hardware Manual
LDR0_BlRate ...
LDR15_BlRate
LBR_OFF(i)
LBR_ON(i)

1200
…

123C

Layer 0 to Layer 15 blink rate definitions
[15:8] = (#-1) of frames for blink alternative color
[7:0] = (#-1) of frames for blink color

undef.

LDR0_CSpace …
LDR15_CSpace
CSPC_CSC(i)
CSPC_TE(i)
CSPC_LDE(i)

1240
…

127C

Layer 0 to Layer 15 color space & format defini-
tions
[3:0] = color space code
[8] = transparency enable
[9] = line doubling enable (for video field/frame
conversion)

undef.

Merging description record information

MDR_Format
CFORMAT_CSC
CFORMAT_GFORCE
CFORMAT_IPOLEN
CFORMAT_GAMEN
CFORMAT_LITC

1300 Intermediate color space & conversion definition
[3:0] = intermediate color space
[5] = RGB gamma forcing (valid only when
gamma table enable is set)
[6] = YUV422 chroma interpolation enable
[7] = gamma table enable
[31:16] = layer to intermediate transfer codes
(0 = normal transfer, 1 = alternative transfer)

1bpp
off

off
off

0000

MDR_Bgnd
BACKCOL_COL
BACKCOL_EN

1304 Background color, i.e. color to display for pixels
not covered by any layer
[23:0] = color (according to intermediate color
space)
[24] = background enable

0000
0

MDR_BlinkCtrl
MBC_EN
MBC_CBS

1308 Blink enable bits & blink state read-back
[15:0] = blink enable (one bit per layer)
[31:16] = current blink state (read-only)

0000

MDR_ZOrder
ZORDER_EN0
ZORDER_EN1
ZORDER_EN2
ZORDER_EN3
ZORDER_TM0
ZORDER_TM1
ZORDER_TM2
ZORDER_TM3

130C Z-order register, i.e. four places to describe stack-
ing of layers
[3:0] = # of downmost layer (plane 0)
[7:4] = # of next layer (plane 1)
[11:8] = # of top but one layer (plane 2)
[15:12] = # of topmost layer (plane 3)
[16] = enable plane 0
[17] = enable plane 1
[18] = enable plane 2
[19] = enable plane 3

0
0
0
0

off
off
off
off

MDR_ClutOffs0 …
MDR_ClutOffs15
CLUTOF(i)

1340
…

137C

Table of 16 color table offsets
[8:0] = offset into look-up table for layeri

undef.

MDR_DRM0 …
MDR_DRM13
DRM(i)

1380
…

13B4

table of 14 definitions for pseudo gray levels
[5:0] = duty ratio definition

undef.

YUV to RGB Matrix Parameters (Jasmine only)

Table 4-1: GPU Register Set(continued).

Mnemonic
(API-Names)

Addr

L
oc

k Function Initial
Value
Page 188

Graphic Processing Unit
MTX_PreBias
PREBIAS_Y
PREBIAS_CB
PREBIAS_CR

1400 Pre matrix bias values
[23:16] = PreBiasY
[15:8] = PreBiasCb
[7:0] = PreBiasCr

F0
80
80

MTX_CoeffR
COEFFR_YXR
COEFFR_CBXR
COEFFR_CRXR

1404 Matrix coefficients to red channel
[23:16] = YxR
[15:8] = CBxR
[7:0] = CRxR

80
0

B3

MTX_CoeffG
COEFFG_YXG
COEFFG_CBXG
COEFFG_CRXG

1408 Matrix coefficients to green channel
[23:16] = YxG
[15:8] = CBxG
[7:0] = CRxG

80
2C
5B

MTX_CoeffB
COEFFB_YXB
COEFFB_CBXB
COEFFB_CRXB

140C Matrix coefficients to blue channel
[23:16] = YxB
[15:8] = CBxB
[7:0] = CRxB

80
E2

0

CLUT
CLUT(i)

2000
…

27FC

Color look-up table with 512 (Jasmine) or 256
(Lavender) entries
[23:0] = color (according to intermediate color
space)

undef.

Gamma correction tables (Jasmine only)

Gamma
GAMMA_R
GAMMA_G
GAMMA_B

2800
…

2BFC

Look-up tables for inverse gamma correction
[23:16] = R
[15:8] = G
[7:0] = B

undef
undef
undef

Display interface record information

DIR_PhSize
PHSIZE_X
PHSIZE_Y

3000 x Display physical size, i.e. visible pixel area
[29:16] = PX = width
[13:0] = PY = height

0
0

DIR_Format
PHFRM_CSC
PHFRM_RBSW
PHFRM_BSC
PHFRM_FTE
PHFRM_SM
PHFRM_TDM
PHFRM_IES
PHFRM_HSYAE
PHFRM_VSYAE
PHFRM_POL

3004 x Output format definitions
[3:0] = physical color space
[4] = R/B swap
[11:8] = bit stream format code
[12] = field toggle enable (distinguishes between
odd & even fields)
[17:16] = scan mode
[18] = twin display mode (1 = enable)
[24] = int./ext. sync (0 = int. sync, i.e. hsync,vsync,
vref are outputs)
[25] = xhsync active edge (0 = low/high edge)
[26] = xvsync active edge [26]
[27] = xfref polarity (0 = odd field ref. is low
active)

1bpp
off
S1
off

SglSca
n

off
int

0
0
0

Table 4-1: GPU Register Set(continued).

Mnemonic
(API-Names)

Addr

L
oc

k Function Initial
Value
GPU Register Set Page 189

MB87J2120, MB87P2020-A Hardware Manual
DIR_PXScanDots
PHSCAN_SCLK

3008 x Physical size in scan dots (PX*BitsPerPixel/Bit-
sPerScanclock)
[29:16] = SX 0

DIR_DualScanOffs
DUALSCOF

300C x Dual scan Y offset (usually PY/2)
[13:0] = offset 0

DIR_MTimOddStart
MTIMODD_X(0)
MTIMODD_Y(0)

3010 x Master timing: odd/only field start (in scan clock
cycles, with respect to visible area)
[30:16] = x (2’s complement)
[14:0] = y (2’s complement)

0
0

DIR_MTimOddStop
MTIMODD_X(1)
MTIMODD_Y(1)

3014 x Master timing: odd/only field stop (in scan clock
cycles, with respect to visible area)
[30:16] = x (2’s complement)
[14:0] = y (2’s complement)

0
0

DIR_MTimEvenStart
MTIMEVEN_Y(0)

3018 x Master timing: even field start (in scan clock
cycles, with respect to visible area)
[14:0] = y (2’s complement) 0

DIR_MTimEvenStop
MTIMEVEN_Y(1)

301C x Master timing: even field stop (in scan clock cycles,
with respect to visible area)
[14:0] = y (2’s complement) 0

DIR_MTimingOn
MTIMON

3020 Master timing switch
[0] = switch (0 = off, 1 = on) off

DIR_TimingDiag
TIMDIAG_X
TIMDIAG_FIELD
TIMDIAG_Y

3024 Diagnostic register, contains current timing posi-
tion

read-
only

DIR_SPG0PosOn
SPGPSON_X(i)
SPGPSON_FIELD(i)
SPGPSON_Y(i)

3030 Sync pulse generator 0, “switch-on” position
[30:16] = X scan position (2’s complement)
[14:0] = Y scan position (2’s complement)
[15] = field (0=odd, 1=even field)

0
0
0

DIR_SPG0MaskOn
SPGMKON_X(i)
SPGMKON_FIELD(i)
SPGMKON_Y(i)

3034 Sync pulse generator 0, “switch-on” don’t care vec-
tor
[30:0] = mask bits (1= do not include this bit into
position matching)

0

DIR_SPG0PosOff
SPGPSOF_X(i)
SPGPSO_FIELD(i)
SPGPSO_Y(i)

3038 Sync pulse generator 0, “switch-off” position
[30:16] = X scan position (2’s complement)
[14:0] = Y scan position (2’s complement)
[15] = field (0 = odd, 1 = even field)

0
0
0

DIR_SPG0MaskOff
SPGMKOF_X(i)
SPGMKOF_FIELD(i)
SPGMKOF_Y(i)

303C Sync pulse generator 0, “switch-off” don’t care
vector
[30:0] = mask bits (1= do not include this bit into
position matching)

0

DIR_SPG1PosOn 3040 Sync pulse generator 1, “switch-on” position (cf.
DIR_SPG0PosOn)

Table 4-1: GPU Register Set(continued).

Mnemonic
(API-Names)

Addr

L
oc

k Function Initial
Value
Page 190

Graphic Processing Unit
DIR_SPG1MaskOn 3044 Sync pulse generator 1, “switch-on” don’t care vec-
tor (cf. DIR_SPG0PosOn)

DIR_SPG1PosOff 3048 Sync pulse generator 1, “switch-off” position (cf.
DIR_SPG0PosOn)

DIR_SPG1MaskOff 304C Sync pulse generator 1, “switch-off” don’t care
vector (cf. DIR_SPG0PosOn)

DIR_SPG2PosOn 3050 Sync pulse generator 2, “switch-on” position (cf.
DIR_SPG0PosOn)

DIR_SPG2MaskOn 3054 Sync pulse generator 2, “switch-on” don’t care vec-
tor (cf. DIR_SPG0PosOn)

DIR_SPG2PosOff 3058 Sync pulse generator 2, “switch-off” position (cf.
DIR_SPG0PosOn)

DIR_SPG2MaskOff 305C Sync pulse generator 2, “switch-off” don’t care
vector (cf. DIR_SPG0PosOn)

DIR_SPG3PosOn 3060 Sync pulse generator 3, “switch-on” position (cf.
DIR_SPG0PosOn)

DIR_SPG3MaskOn 3064 Sync pulse generator 3, “switch-on” don’t care vec-
tor (cf. DIR_SPG0PosOn)

DIR_SPG3PosOff 3068 Sync pulse generator 3, “switch-off” position (cf.
DIR_SPG0PosOn)

DIR_SPG3MaskOff 306C Sync pulse generator 3, “switch-off” don’t care
vector (cf. DIR_SPG0PosOn)

DIR_SPG4PosOn 3070 Sync pulse generator 4, “switch-on” position (cf.
DIR_SPG0PosOn)

DIR_SPG4MaskOn 3074 Sync pulse generator 4, “switch-on” don’t care vec-
tor (cf. DIR_SPG0PosOn)

DIR_SPG4PosOff 3078 Sync pulse generator 4, “switch-off” position (cf.
DIR_SPG0PosOn)

DIR_SPG4MaskOff 307C Sync pulse generator 4, “switch-off” don’t care
vector (cf. DIR_SPG0PosOn)

DIR_SPG5PosOn 3080 Sync pulse generator 5, “switch-on” position (cf.
DIR_SPG0PosOn)

DIR_SPG5MaskOn 3084 Sync pulse generator 5, “switch-on” don’t care vec-
tor (cf. DIR_SPG0PosOn)

DIR_SPG5PosOff 3088 Sync pulse generator 5, “switch-off” position (cf.
DIR_SPG0PosOn)

DIR_SPG5MaskOff 308C Sync pulse generator 5, “switch-off” don’t care
vector (cf. DIR_SPG0PosOn)

DIR_SSqCycle
SSQCYCLE

30FC Sequencer cycle length
[4:0] = (#-1) of sequencer cycles 0

Table 4-1: GPU Register Set(continued).

Mnemonic
(API-Names)

Addr

L
oc

k Function Initial
Value
GPU Register Set Page 191

MB87J2120, MB87P2020-A Hardware Manual
DIR_SSqCnts
SSQCNTS_OUT(i)
SSQCNTS_SEQX(i)
SSQCNTS_FIELD(i)
SSQCNTS_SEQY(i)

3100
…

31FC

Sequencer position definitions
[30:16] = X scan position (2’s complement)
[14:0] = Y scan position (2’s complement)
[15] = field (0=odd, 1=even field)
[31] = output value, when position is reached

undef.

DIR_SMx0Sigs
SMXSIGS_S4(i)
SMXSIGS_S3(i)
SMXSIGS_S2(i)
SMXSIGS_S1(i)
SMXSIGS_S0(i)

3200 Sync mixer 0 signal select
[14:12] = s4
[11:9] = s3
[8:6] = s2
[5:3] = s1
[2:0] = s0
si == 0: const. zero
si == 1 sync sequencer output
si == 2…7 sync pulse generator 0…5 output

0
0
0
0
0

DIR_SMx0FctTable
SMXFCT(i)

3204 Sync mixer 0 function table
[31:0] = output value
mixer output = function table [a]

a = s4*24+s3*23+s2*22+s1*21+s0*20

0

DIR_SMx1Sigs 3208 Sync mixer 1 signal select (cf. DIR_SMx0Sigs)

DIR_SMx1FctTable 320C Sync mixer 1 function table (cf.
DIR_SMx0FctTable)

DIR_SMx2Sigs 3210 Sync mixer 2 signal select (cf. DIR_SMx0Sigs)

DIR_SMx2FctTable 3214 Sync mixer 2 function table (cf.
DIR_SMx0FctTable)

DIR_SMx3Sigs 3218 Sync mixer 3 signal select (cf. DIR_SMx0Sigs)

DIR_SMx3FctTable 321C Sync mixer 3 function table (cf.
DIR_SMx0FctTable)

DIR_SMx4Sigs 3220 Sync mixer 4 signal select (cf. DIR_SMx0Sigs)

DIR_SMx4FctTable 3224 Sync mixer 4 function table (cf.
DIR_SMx0FctTable)

DIR_SMx5Sigs 3228 Sync mixer 5 signal select (cf. DIR_SMx0Sigs)

DIR_SMx5FctTable 322C Sync mixer 5 function table (cf.
DIR_SMx0FctTable)

DIR_SMx6Sigs 3230 Sync mixer 6 signal select (cf. DIR_SMx0Sigs)

DIR_SMx6FctTable 3234 Sync mixer 6 function table (cf.
DIR_SMx0FctTable)

DIR_SMx7Sigs 3238 Sync mixer 7 signal select (cf. DIR_SMx0Sigs)

DIR_SMx7FctTable 323C Sync mixer 7 function table (cf.
DIR_SMx0FctTable)

DIR_SSwitch
SSWITCH

3240 x Sync switch
[7:0] = delay select (0=no, 1=0.5 cycle delay) 0

Table 4-1: GPU Register Set(continued).

Mnemonic
(API-Names)

Addr

L
oc

k Function Initial
Value
Page 192

Graphic Processing Unit
DIR_PixClkGate
PIXCLKGT_GT
PIXCLKGT_GON
PIXCLKGT_CP
PIXCLKGT_HC

3248 x Pixel clock gate control (by output of sync mixer 7)
[0] = gate type (0=AND, 1=OR)
[1] = gate enable (0=off)
[2] = clock polarity (0=true, 1=inverted)
[3] = divider (0=1:1, 1=1:2)

0
0
0
0

DIR_CKlow
CKLOW_LLR
CKLOW_LLG
CKLOW_LLB
CKLOW_OP

3250 Color key lower limits (according to physical color
space)
[23:16] = red channel
[15:8] = green channel
[7:0] = blue/monochrome channel
[24] = key out polarity (0=active high, 1=active
low)

0
0
0
0

DIR_CKup
CKUP_ULR
CKUP_ULG
CKUP_ULB

3254 Color key upper limit (according to physical color
space)
[23:16] = red channel
[15:8] = green channel
[7:0] = blue/monochrome channel
Pinxo_ckey is activated, when all pixel channels
lie within (including limits) their respective limits

0
0
0

DIR_AClamp
ACLAMP_ACLR
ACLAMP_ACLG
ACLAMP_ACLB

3258 Jasmine: Clamping value for analog outputs
Lavender: Clamping value for analog and digital
output
[23:16] = red channel
[15:8] = green channel
[7:0] = blue channel

0
0
0

DIR_DClamp
DCLAMP

325C Clamping value for digital outputs (Jasmine only)
[23:0] = value output during blanking 0

DIR_MainEnable
MAINEN_DOE
MAINEN_HSOE
MAINEN_VSOE
MAINEN_VROE
MAINEN_CKOE
MAINEN_DACOE
MAINEN_REFOE

3260 Main display output enable flags
[23:0] = digital data output enable
[24] = hsync output enable (when int. sync)
[25] = vsync output enable (when int. sync)
[26] = vref output enable (when int. sync)
[27] = ckey output enable
[28] = DACs output enable
[29] = reference voltage enable

0
0
0
0
0
0
0

SDRAM Controller Interaction

GPU_SDCPrio
SDCP_LP
SDCP_HP
SDCP_IFL

3270 SDRAM Controller request priorities
[2:0] = low priority value (not used)
[6:4] = high priority value
[15:8] = input FIFO load (read-only)

3
7

Table 4-1: GPU Register Set(continued).

Mnemonic
(API-Names)

Addr

L
oc

k Function Initial
Value
GPU Register Set Page 193

MB87J2120, MB87P2020-A Hardware Manual

he val-
the

hys-
in table

pixel
igital

n dots,

t

al to
re-

ance

e first
d either
he fact
llowed

can
y (i.e.
e is
is de-
is

as neg-

-
x3010

tive
an

given
4.2 Determination of Register Contents

4.2.1 Values Derived from Display Specs

Resolution and Formats

The display spec states the number of physically visible pixels in each direction. These numbers are t
ues used inDIR_PhSize, i.e. the number of visible pixels per line is the PX value, the number of lines
PY value.

The code for physical color space is derived from the number of bits per pixel (color resolution). After p
ical color space is defined, intermediate color space has to be chosen from the legal mappings, given
2-2, section 2.4.

The number of pixels the display expects per pixel clock cycle (or the number of bits expected per
clock in relation to the color resolution, as actually stated), together with the display interface type (d
or analog) determine the bit stream format.

Once derived, the values for PX and bit stream format are used to determine the physical size in sca

i.e. PXScanDots. This value is calculated this way: . Tha

means that the value ofPXScanDots is rounded towards the nearest integer that is less than or equ
the fractional value. This doesnot prevent a fractional number of pixels per scan clock being output as
quired by some displays.

Timing and Sync-Signals

After entry of resolution and formats timing is the next item to specify. This has to be done in accord
to the pixel clock set up in the Clock Unit (CU).

As was elaborated in section 3.9, all timing is described in terms of the timing coordinate space. Th
task is therefore to establish its basic unit, i.e. the time needed per scan dot. This value can be obtaine
directly from the display’s spec sheet or need to be calculated from other values given there. Due to t
that only discrete pixel clock rates are possible, this unit time has to be rounded to the nearest value a
by the actual pixel clock. Hence,

Now the values forxstart andxstop (bits [30:16], 2’s complement, addresses 0x3010 and 0x3014)
be calculated. The first of these contains the start time of a line in relation to the begin of active displa
the first visible pixel) expressed in timing coordinates, i.e. the number of pixel clock cycles. This tim
obtained from the display’s spec sheet either as time or number of clocks. If given as time, the value
termined this way: . Please note that for leading blanking th

value is negative, so if the spec sheet gives the number of clock cycles directly, it has to be entered
ative number as well.

Depending on how the length of a line is stated in the display spec, thexstop value can be obtained in two
ways:

from a time value:

from the number of clock cycles:

The correspondingystart andystop values are calculated in a similar manner. If no TV-conform tim
ing is needed then the respective “odd” values are sufficient (bits [14:0], 2’s complement, addresses 0
and 0x3014). The value forystart is basically the number of leading blanking lines entered as nega
value (cf. note forxstart). If only a period of time for leading blanking is given in the spec the value c
be calculated as follows:

Depending on whether the global number of display lines (active and blanking) or the frame period is
in the spec, theystop value can be calculated these ways:

using a global number of lines:

using the frame period:

PXScanDots PX BitsPerPixel×
BitsPerScanClock
---=

tScanDot 1 PixelClock⁄≈

xstart tLineStart tActiveDisplay–() tScanDot⁄=

xstop xstart TimePerLine tScanDot⁄() 1–+=

xstop xstart CyclesPerLine 1–+=

ystart VertLeadBlank TimePerLine⁄=

VertLeadBlank xstop xstart– 1+() PixelClock⁄()⁄=

ystop NumberOfLines ystart 1–+=

ystop T Frame TimePerLine⁄() ystart 1–+=
Page 194

Graphic Processing Unit

ber

y spec
erators
es for

inates”
rizontal
ition

ning

priate

rnal
plays
essary,
mixer

for the

wide
alues.
em as a
isplay
have

tion.
In case of TV-conform timing being required two different pairs ofystart and ystopvalues are needed,
referred to as “odd” and “even”. They will be used alternating every other frame. Usually, theystart val-
ues will be the same, whilst theystop values differ by one. Thus it is possible to achieve an odd num
of lines for two consecutive frames.

Note: The complete entry of all necessary start and stop values is indispensable regardless of whether in-
ternal or external generation of sync signals is specified.

After determination of start and stop values sync signals can be specified as obtained from the displa
if internal generation of sync signals is requested. For the majority of cases usage of sync pulse gen
as described in 3.10.2 should be sufficient. The basic task for their application is to determine the valu
start and duration of the required sync signals. These values are then converted to the “timing coord
and entered into the appropriate GPU registers (addresses 0x3030 to 0x308C). For instance, a ho
sync signal that starts a display line and lasts for would result in a value for its “switch-on” pos

of and a “switch-off” position of , whilst the respective

y-components set to “don’t care”. Hence, this signal will provide a pulse of length at the begin

of each line. Position calculations are similar when the sync sequencer shall be used.

The required polarity and optional half cycle delay at the respective GDC pin is produced by the appro
sync mixer and sync switch settings as explained in 3.10.4 and 3.10.5.

External pixel clock

Depending on the specified GDC clock source for pixel clock (received from pin or derived from inte
clocks) the GPU can produce a tailored pixel clock signal at the clock pin for the display. Some dis
may require a gated clock that has periodical gaps. This behaviour is stated in the display spec. If nec
it can be produced using the clock gating described in 3.11 in conjunction with the settings for sync
7 that controls this gate. The gate control signal is produced in the same manner as described above
sync signals.

Size, Timing, and Sync Dependencies

Although the values for physical display size, timing, and sync generation are programmable within
ranges, they are strictly interlocked for a certain display. Therefore, it is important to enter consistent v
The previous paragraphs gave the rules to determine the values, here, table 4-2 shall conclude th
quick overview to check for correct magnitudes in correspondence to different scan modes for a d
with a given pixel resolution of (see also section 3.6).The timing values are approximative and
to be tuned for blanking.

Table 4-2: Dependencies for size and timing according to scan mode for a display of given resolu

Values Scan Mode

SglScan DualScan ZzagScan

Si
ze

PX X

PY Y

PXScanDots

T
im

in
g

basic horizontal (hsync)
cycle, i.e.

≈ PXScanDots ≈

basic vertical (vsync)
cycle, i.e.

≈ Y ≈

resulting frame period ≈ ≈ ≈

thsync

px on, xstart= px off, px on, thsync tScanDot⁄()+=

thsync

X Y×

PX BitsPerPixel×
BitsPerScanClock

xstop xstart–
2 PXScanDots×

ystop ystart–
Y 2⁄

PXScanDots Y× PXScanDots Y×
2

--- PXScanDots Y×
GPU Register Set Page 195

MB87J2120, MB87P2020-A Hardware Manual

ssibly
pports

NC,

-14,
onding
utput
ter-

carry

ssary.
riods.
ul for

amma
rmined.
inance

nega-

bers.

r-
Interface to Physical Display

The electrical interface of the actual display wired to the GDC determines the number, type and po
the direction of signals at the pins. Direction information is needed for sync signals, as the GPU su
external and internal synchronization. In case of external synchronization the pins DIS_HSY
DIS_VSYNC, and DIS_VREF are inputs, otherwise outputs.

The digital multi-purpose pins DIS_D[23:0] carry either pixel data or sync signals as given in table 3
section 3.14. Pins not necessary for operation can be switched to high-Z by resetting their corresp
output enable bit in the DIR_MainEnable word (address 0x3260). This applies also to the color key o
pin DIS_CK as well as to the sync signal pins DIS_HSYNC, DIS_VSYNC, and DIS_VREF when in in
nal synchronization mode.

In case of a display with analog inputs connected to GDC the pins A_RED, A_GREEN, and A_BLUE
the output if the internal DACs when the following conditions hold (otherwise they are high-Z):

• scan mode (bits [17:16] ofDIR_Format) is set to SglScan AND

• DAC output enable as well as reference voltage enable (bits [28] and [29] ofDIR_MainEnable,
address 0x3260) is set AND

Either:

— Twin display mode (bit [18] of address 0x3004) is off

— physical color space (bits [3:0] ofDIR_Format, address 0x3004) is set to RGB888,

— bit stream format (bits [11:8] ofDIR_Format) is set to AN (analog display is primary),

Or (Jasmine only)

— Twin display mode is on

— physical color space is RGB333…RGB888

— bit stream format is set to S9…S24 (analog display is secondary)

When connecting analog displays to GDC via capacitors a clamping value for defined levels is nece
This value is entered into the DIR_AClamp register (address 0x3258) and is output during blanking pe
The similar value DIR_DClamp (address 0x325C) exists for the digital pins and may there be usef
external glue circuitry.

4.2.2 Values Determined by Application

Matrix Settings (Jasmine only)

If image data is processed in one of the YUV formats appropriate matrix parameters and possibly g
table settings are necessary. First, the pre-matrix biases (bits [23:0] of address 0x1400) need be dete
These are signed 8 bit numbers in 2’s complement which are used to adjust the value ranges of lum
and chrominance before matrix multiplication. Adjustments should be made in a manner that:

— Luminance (Y) values are mapped to a monotonous range of 0…0xFF (zero to full scale)

— Chrominance (U, V) values are mapped to a monotonous range of 0x80…0…0x7F (most
tive…neutral gray…most positive)

If the image data comply to the ITUR-601 standard then the default values need not be changed.

Next, the matrix coefficients have to be calculated, i.e. their values are mapped to 8 bit binary num
This is accomplished using the following formula:

(11)

Please be aware that (cf. 3.7.2)

— The absolute value of any coefficient must lie in the range of 0…2

— The values of coefficientsCBxG andCRxG (bits [15:8] and [7:0] of address 0x1408)are inte
nally treated as negative.

If the image data comply to the ITUR-601 standard then the default values need not be changed.

ConfigReg absCoeff() 128⋅ mod 256=
Page 196

Graphic Processing Unit

r any
sses

f ad-

, line

so
to im-
ed by

e bit
back-

sage
4bbp to
e, the
ddresses

ta has
 time.

cteris-

es in

g tables

oeffi-
ma

order

 may
ters or

RAM
Gamma Settings (Jasmine only)

If there is any post processing required after matrix multiplication then this can be accomplished fo
function by loading appropriate values into the gamma tables (bits [23:0] of addre

0x2800…0x2BFC). In order for the gamma conversion to take affect the gamma enable flag (bit [7] o
dress 0x1300) must be set.

4.2.3 User preferences

In general, all layer specific settings (positions, color resolution, blink/transparency color, blink rate

doubling) are unlimited at the user’s command1. Further, blink enables, Z-order, and CLUT offsets can al
be chosen arbitrarily. When displaying YUV422 image data chroma interpolation can be switched on
prove image quality. It is also up to the user to switch on line doubling, especially for video data fetch
VIC.

The contents of the color look-up table is also free to choose, with the only limitation that the effectiv
width of the contents is determined by the intermediate color space. This limitation applies also to the
ground color. A similar limitation holds for the color key limits, but with the physical color space.

Duty ratio modulation (cf. 3.8) may be applied to improve the impression of the image displayed. Its u
depends on the physical color space and intermediate color space. For the mappings [intermediate
physical 1bpp] and [intermediate RGB222 to physical RGB111] duty ratio modulation is used, henc
values for the pseudo levels to be generated have to be entered into the respective registers (a
0x1380 to 0x13B4).

4.3 GPU Initialization Sequence

In order to ensure a correct operation of the connected display as well as for the GPU itself control da
to be entered in a certain sequence. Further, not every control register may be written at any given

Basically, information that defines display timing can not be changed afterMasterTimingOn has been
set to one.

Initialization should be carried out as follows:

7. Determine parameters of the display physically connected to the GDC and derive timing chara
tics. Load the values into the appropriate registers.

8. Determine what interface signals are needed and enable them by setting the valu
DIR_MainEnable.

9. Load the contents of the CLUT, if needed.

10. Derive the necessary intermediate color space (dependent on the physical color space), usin
2-2 and 2-3.

11. Determine whether matrix multiplication is necessary. If so, load pre matrix biases and matrix c
cients (when differing from defaults). If post processing of matrix results is required load gam
tables with appropriate contents.

12. Load the Duty Ratio Modulator registers, if needed.

13. Set layer geometry by loading the respective layer description record registers.

14. Now, MasterTimingOn may be set, thus starting signal generation at the output pins. If the Z-
register remained unchanged in reset state, all pixels are displayed in background color.

During normal operation, color attributes (layer, blinking, transparent, background, CLUT contents)
be set at any time and take effect immediately. Changing layer color spaces, layer position parame

Z-order register contents affects the display at the start of the next frame being fetched from video 2

1. There is a limitation concerning the color space in that there has to be a legal mapping to the intermediate
color space, as given in table 2-1.

Igam f Imtx()=
GPU Register Set Page 197

MB87J2120, MB87P2020-A Hardware Manual

t. It is
ndition

lay
thers do

band-
labo-

e
ideo-

g to
faults
5 Bandwidth Considerations

5.1 Processing Bandwidth

5.1.1 Average Bandwidth

For a first go/no go decision an estimation of average GPU bandwidth demands might be sufficien
done on the basis of the number of pixels processed per frame and the frame period. In general, the co

(12)

must hold for the GPU to work properly. These two periods are calculated as follows:

a) Frame period:

(13)

(14)

(15)

b) Processing period:

(16)

Note 1: DisplayArea counts only when background is enabled.

Note 2: LayerArea counts only for potentially visible pixels, i.e. parts of layers outside the physical disp
area need not be processed and therefore do not count here. However, pixels hidden underneath o
count.

5.1.2 Peak Bandwidth

To have a more reliable statement about whether or not confirming to bandwidth restrictions the peak
width has to be calculated, since this is virtually the limiting constraint. Therefore, a more detailed e
ration into GPU function is necessary.

Pixels are processed in portions of oneline segment. The size of one such line segment is a function of th
visible layers logical color spaces, the physical color space, an internal burst limit (512 pixels) for V
RAM accesses, and the actual number of pixels per line.

(17)

The values for the number of pixels per word (either per VideoRAM word or per LSA word) accordin
color spaces are given in tables 5-1 and 5-2. In the special case that no layer is active de

to 1.

2. Due to internal FIFOs the physical display is affected with a delay dependent on picture size, visible layers
and their color resolution.

Tproc T frame≤

T frame TDisplayClock x∆⋅ y∆⋅=

x∆ XStop XStart–=

y∆
YoddStop YoddStart– 1+ for disabled field-toggling

1
2
--- YoddStop YoddStart– 1+() YevenStop YevenStart– 1+()+()⋅ for enabled field-toggling

=

Tproc Tbackground T layers+=

TCoreClock DisplayArea LayerArea+()⋅=

TCoreClock PhysX PhysY⋅() WXi WYi⋅()
visible layers∑+

 ⋅=

SegLen min 32 minppwlog l,()⋅ 32 ppwphys⋅ 512 PhysSizeX, , ,()=

min ppwlog l,()
Page 198

Graphic Processing Unit

ment is

.
rted (cf.
The limiting constraint (12) can now be refined to

(18)

since every line segment has to be fully processed during a time shorter or equal to the time a seg
output. These two periods of time are calculated as follows:

a) Time to output a line segment:

(19)

(20)

(21)

The values for bits per scan dot (bpsd) and bits per physical pixel (bppphys) are given in tables 5-3 and 5-4
Please note that only certain combinations of bit stream formats and physical color spaces are suppo
table 3-4, p. 165).

Table 5-1: Number of pixels per VideoRAM word according to logical color space.

Logical Color
Space Code

1b
pp

2b
pp

4b
pp

8b
pp

R
G

B
55

5

R
G

B
56

5

R
G

B
88

8

Y
U

V
42

2

Y
U

V
44

4

Y
U

V
55

5a

a. This format is only available for MB87P2020-A (Jasmine).

Y
U

V
65

5a

ppwlog 32 16 8 4 2 2 1 2 1 2 2

Table 5-2: Number of pixels per LSA word according to physical color space.

Physical Color
Space Code

1b
pp

R
G

B
11

1

4b
pp

R
G

B
33

3

R
G

B
44

4

R
G

B
66

6

R
G

B
88

8

ppwphys 24 8 6 2 2 1 1

Table 5-3: Number of bits per scan dot according to bit stream format.

Bit Stream
Format Code

S1 S2 S4 S6 S8 S9 S12 S18 S24 AN

bpsd 1 2 4 6 8 9 12 18 24 24

Table 5-4: Number of bits per physical pixel according to physical color space.

Physical Color
Space Code

1b
pp

R
G

B
11

1

4b
pp

R
G

B
33

3

R
G

B
44

4

R
G

B
66

6

R
G

B
88

8

bppphys 1 3 4 9 12 18 24

max T seg proc,() T seg out,≤

T seg out, T DisplayClock SegLen StreamFactor⁄⋅()=

StreamFactor PhysSizeX PXScanDots⁄() ScanFactor⋅=

bpsd bppphys⁄() ScanFactor⋅=

ScanFactor
1 for ScanMode DualScan≠
2 for ScanMode = DualScan

=

Bandwidth Considerations Page 199

MB87J2120, MB87P2020-A Hardware Manual

be

y turn
) in-
b) Maximum time to process a segment:

(22)

To obtain the valueMaxSegPixel the segment with the maximum number of pixels processed has to
found. This is achieved following the algorithm shown in figure 5-1.

As a result of this the minimal frequency ratio of core clock to display clock is derived as:

(23)

5.2 Memory Bandwidth

Although memory access is more unlikely to become the bottleneck in contrast to processing it ma
out as limiting factor when memory traffic of other GDC units (e.g. Pixel Processor or Direct Access
creases. Therefore, estimations for memory bandwidth are given here.

max T seg proc,() T CoreClock MaxSegPixel⋅=

MaxSegPixel := 0
for y := 0 to (PhysSizeY-1) do
begin

act_layers:= {}
foreach l in vis_layers do
begin

if y >= OffsY(l) and y < (OffsY(l)+WY(l)) then
act_layers := {act_layers, l}

end
if act_layers == {} then continue
segm_start := 0
while (segm_start < PhysSizeX) do
begin

segm_stop := min((segm_start + SegLen), PhysSizeX)
seg_pixels := 0
foreach l in act_layers do
begin

if OX(l) >= segm_stop or (OX(l) + WX(l)) < segm_start then
continue

if OX(l) < segm_start then
layer_start := segm_start

else
layer_start := OX(l)

if (OX(l) + WX(l)) >= segm_stop then
layer_stop := segm_stop

else
layer_stop := OX(l) + WX(l)

seg_pixels := seg_pixels + (layer_stop -layer_start)
end
if logical_color_space(l) == YUV422 then

seg_pixels := seg_pixels + 2
if background_enabled then

seg_pixels := seg_pixels + (segm_stop - segm_start)
if seg_pixels > MaxSegPixel then

MaxSegPixel := seg_pixels
end

Figure 5-1: Algorithm to determine the maximum number of processed pixels per line segment.

f CoreClock

f DisplayClock

T DisplayClock

T CoreClock
---------------------------=

MaxSegPixel
SegLen

------------------------------- ScanFactor⋅≥
Page 200

Graphic Processing Unit

o-

mory

con-

es that
is not
ent is
5.2.1 Average Bandwidth

This estimation is done on the basis of the visible1 layer area, i.e. the area of active layers within the ge
metrical borders of the physical display, since all pixels displayed had to be fetched.

The mean number of words (which is equal to the number of core clock cycles) transferred from me
is calculated as follows:

(24)

The number of pixels per VideoRAM word was already given in table 5-1. For correct GDC function
dition (25) must hold:

(25)

5.2.2 Peak Bandwidth

As already mentioned in section 5.1.2, GPU processes data in portions of a line segment. This impli
the segment with the maximum number of words fetched has to be found (it should be noted that this
necessarily the segment with the maximum number of pixels). The algorithm used to find this segm

1. The area counts also as visible if a layer is (partially) covered by another layer.

WGPU Areal
1

ppwlog l,
------------------⋅

visible layers∑=

T frame T CoreClock WGPU Wother units+()⋅≥
Bandwidth Considerations Page 201

MB87J2120, MB87P2020-A Hardware Manual

ation

pixel
ce, es-
hould

menda-
ving

an be
shown in figure 5-2. It is quite similar to that in figure 5-1. Segment length is determined using equ
(17).

With this result, condition (25) is refined to

(26)

WhereTseg, outis the time to output one segment as calculated in equation (19), andWpeak, GPUis simply
MaxSegWords.

5.3 Recommendations

In order to ensure correct GPU function it is important to estimate the necessary bandwidth for
processing and output. However, one has to bear in mind that not all influences are known in advan
pecially the behaviour of other units the GPU shares the SDC and VideoRAM with. Therefore, one s
provide for sufficient safety range when determining GDC setup.

There are some issues that can help save memory and processing bandwidth. Following the recom
tions given below it may be possible to operate at lower core clock / display clock ratios, thus impro
EMC and reducing power consumption.

• When the whole display area is covered by non-transparent layer pixels background painting c
switched off.

• Multiple layers do not increase bandwidth when they do not cover each other.

MaxSegWords := 0
for y := 0 to (PhysSizeY-1) do
begin

act_layers:= {}
foreach l in vis_layers do
begin

if y >= OffsY(l) and y < (OffsY(l)+WY(l)) then
act_layers := {act_layers, l}

end
if act_layers == {} then continue
segm_start := 0
while (segm_start < PhysSizeX) do
begin

segm_stop := min((segm_start + SegLen), PhysSizeX)
seg_words := 0
foreach l in act_layers do
begin

if OX(l) >= segm_stop or (OX(l) + WX(l)) < segm_start then
continue

if OX(l) < segm_start then
layer_start := segm_start

else
layer_start := OX(l)

if (OX(l) + WX(l)) >= segm_stop then
layer_stop := segm_stop

else
layer_stop := OX(l) + WX(l)

if logical_color_space(l) == YUV422 then
layer_stop := layer_stop + 1

seg_words := seg_words +
truncate((layer_stop - layer_start + ppwlog(l)-1) / ppwlog(l))

end
if seg_words > MaxSegWords then

MaxSegWords := seg_words
end

Figure 5-2: Algorithm to determine the maximum number of words fetched per segment.

Tseg out, TCoreClock Wpeak GPU, W peak other units,+()⋅≥
Page 202

Graphic Processing Unit

to the

eded
This

band-

AM
g cer-
• Large transparent areas should be avoided, instead the layer’s window size should be limited
smallest rectangle including all non-transparent pixels.

• Color resolution (logical color space) should be reduced to the minimal number of colors ne
simultaneously, a more colourful display can be achieved with useful CLUT entries as well.
approach decreases the necessary memory bandwidth.

• Longer blanking periods decrease average bandwidth demands.

• For a given size and display clock dual scan displays demand a higher memory and processing
width.

• Displays with greater StreamFactors according to equation (20) demand higher bandwidth.

• Video display should be used with care, since it produces high memory traffic (from VIC to R
and from RAM to GPU). VIC provides some means to reduce to necessary bandwidth (droppin
tain frames and fields).
Bandwidth Considerations Page 203

MB87J2120, MB87P2020-A Hardware Manual

r-
are not

mory

r con-

by the

code,

, it is
other

given

data
does
). In the
6 Functional Peculiarities

6.1 Configuration Constraints

Due to the great flexibility provided by the extensive programmabilitythere is no built-in precaution
against illegal, not supported or absurd register settings. Programming has to be carried out with a tho
ough understanding of the features explained in this document. Items to pay attention to include (but
limited to):

• Window size does not exceed domain size in every dimension

• Window size greater than zero

• First pixel lies within window size

• Offset within physical display dimensions

• CLUT offset may cause wrap-around for look-up

• Color space settings confirming to tables 2-1 and 2-2, chapter 2

• Non-transparent layers covering others

• Layers multiply exposed (i.e. identical settings for Z-order register entries, this is a waste of me
and processing bandwidth)

• Disabled background will lead to garbage pixels in areas not covered by non-transparent laye
tents

• Values for master timing X stop must be greater than or equal toPXScanDots, master timing Y
stop values must be greater than or equal toPhysSizeY, otherwise internal FSMs will hang

• Sync pulse generator and sync sequencer entries should lie within timing range determined
master timing registers

• Combination of physical color space and bit stream format confirming to table 3-4, chapter 3

• All necessary output pins enabled for connected physical display

• Color key limits according to physical color space

• Register set entries that influence bit stream timing (master timing values, physical color space
bit stream format code, display dimensions etc.) are locked withMasterTimingOn to prevent
internal FSMs from hanging. These values may only be set or changed whenMasterTimingOn is
reset. These registers are marked in table 4-1.

6.2 Bandwidth

• Bandwidth is an important issue when it comes to usage at performance limits. Unfortunately
hard to estimate in advance whether certain settings will cause constraint violations, since
GDC-units, the GPU shares the VideoRAM with, have an influence hard to predict. The rules
in chapter 5 should help checking for possible bottlenecks.
As a support for software development GPU can trigger an interrupt when it suffers from critical
shortage. The interrupt is actually raised when the LSA runs empty (an empty DFU input FIFO
not constitute a data shortage as such, since this state can only be temporary and recoverable
Page 204

Graphic Processing Unit

B flag
re-
tching
h is

the

est

s to
V to
taining
) and
te also

d to
is-
roach
lly

tables
RGB

s than
interrupt case the GPU ceases data fetching for the remaining frame period and triggers the UL
BWVIO (bit 18 of ULB flag word). However, display output continues with blank pixel data to p
vent possible damage at the connected display. This state is left either by soft-reset (i.e. swi
MasterTimingOn off and back on again) or at the begin of the next frame period. If bandwidt
still too small the interrupt will be raised again.

• The priority with which GPU requests data from SDC can be controlled with the settings in

GPU_SDCPrio register (bits [6:4] and [2:0]1, address 0x3270). Per default the GPU has the high
priority amongst all GDC units.Any changes of this value should be done with utmost care, since a
continuous display timing requires a continuous data stream from RAM be maintained.

6.3 Image Processing

There are some points to be aware of when processing image data in YUV color space:

• Matrix coefficientsCBxG andCRxG are treated as having negative sign

• YUV555 and YUV655 color spaces are auto scaled to YUV444 before matrix multiplication

• Processing YUV422 data restricts horizontal first pixel, window size and offset to even values

• There is only either a mapping through matrix or achromatic mapping from YUV color space
intermediate and eventually to physical color space. Therefore, if a direct mapping from YU
GPU pins is desired a special approach is necessary. It consists of a re-labelling of layers con
YUV data to corresponding RGB color spaces with an equal number of bits per pixel (table 6-1
then directly mapping these to the physical color space and thus to the pins (cf. table 3-14). No
that YUV422 uses chrominance multiplexing.

• Image quality for pictures in YUV422 may be improved by using chrominance interpolation.

• To improve image appearance for video pictures grabbed by VIC, GPU offersline doubling. With
this feature (which can be switched on individually for each layer) vertical resolution is reduce
the half by displaying each line in VideoRAM twice on the display (e.g. line #0 from RAM is d
played on display lines #0 and #1, RAM line #1 on display lines #2 and #3 and so on). This app
eliminates inter-field jitter. When used in conjunction with field dropping in VIC it additiona
reduces memory bandwidth.

• Pixels of layers in color space RGB555, RGB565 and RGB888 may be fed through the gamma
to apply further color processing. This mode is enabled when both flags, gamma enable and
gamma forcing, are set. Similar arbitrary color processing is achieved for color spaces with les
16 bits per pixel by simply using the CLUT.

1. Bits [2:0] for low priority are not used in the current implementation, i.e. GPU always uses high priority
requests.

Table 6-1: Compatibility list for YUV to RGB re-labelling.

YUV spaces Corresponding
RGB spaces

YUV422 RGB565

YUV444 RGB888

YUV555 RGB555

YUV655 RGB565
Functional Peculiarities Page 205

MB87J2120, MB87P2020-A Hardware Manual

the
ced by
1 and
ot be
red

3:19]
mixer
value
C,

only

e for

elop-

sig-
used
link-

0] of

as

tion
full
runs
the
6.4 Data Output

• GPU pixel output is always LSB-aligned, i.e. the geometrically leftmost pixel is represented in
least significant bit(s). For cases where displays demand MSB-alignment this has to be produ
appropriate wiring on the PCB. There are two exceptional cases: physical color space RGB11
bit stream format S4 or S8. Then fractions of a pixel are output and the alignment swap can n
obtained by wiring only. Therefore, GPU provides the flag “R/B-swap” which exchanges the
with the blue color channel (exchange of a pixel’s bit 0 and 2).

• Since GPU is designed for LCDs and equivalentprogressive scan1 display types it can not produce
TV-conform interlaced output streams. However, it can produce TV-conformtiming signals (hsync
and vsync, cf. section 3.10) for displays which mimic TV behaviour.

• For bit stream formats other than S24 it is possible to control the values at the pins DIS_D[2
directly by the user (aka port expansion mode). This is achieved by setting the respective sync
signal selects all to constant zero. Then bit 0 of the mixer’s function table represents the pin
directly. This direct control works for all bit stream formats on pins DIS_HSYNC, DIS_VSYN
and DIS_VREF, since these are always available.

• It is possible to run both, an analog and a digital display, concurrently with the same timing (
valid for MB87P2020-A (Jasmine)). This is accomplished using thetwin display mode (cf. 3.5).
However, this works only for single scan displays and pins DIS_D[23:19] may not be availabl
sync signal output then.

6.5 Diagnostics

GPU provides some diagnostic information in read-only registers that might help during software dev
ment. The following data are available:

• Current blink state (bits[31:16], register MDR_BlinkCtrl, address 0x1308). A ’1’ at a bit slice de
nates that the corresponding layer would use its alternative blink color. The information may be
to synchronize different layers or to synchronize drawing and display. A simultaneous start of b
ing for all layers can be achieved by simultaneous setting of the blink enable bits (bits [15:
MDR_BlinkCtrl).

• Current timing position (register DIR_TimingDiag, address 0x3024) in “timing coordinates”
explained in section 3.9. The information is useful to check for correct register settings.

• Current input FIFO load (bits [15:8], register GPU_SDCPrio, address 0x3270). This informa
allows to check for potential bandwidth bottlenecks. During normal operation the FIFO will be
() most of the time. However, it does not constitute a critical state as such when it
empty. Only if there is not enough memory bandwidth left to refill it for longer periods of time
LSA will consequently run empty and raise an interrupt.

1. The termprogressive scan means that a complete frame is output line by line, whilstinterlaced means that a
complete frame is output as twofields, where one field contains all lines with odd and the other field all lines
with even numbers.

load 130≈
Page 206

Graphic Processing Unit

useful
olu-
during

. Some
urrent
7 Supported Displays

The tables in the following sections list the result of a display survey done to derive necessary and
GPU features. They are divided in sections for Passive Matrix LCD, Active Matrix (TFT) LCD, Electr
minescent Displays and Field Emission Displays. Some potential problems for support encountered
this survey are explained in section 7.5.

The tables in sections 7.1 to 7.4 list only those analog inputs necessary for normal display operation
of the displays feature extra inputs e.g. for dimming. These pins usually require potentiometers (or c
D/A converters). The type of digital interface signals is abbreviated as follows:C5 denotes 5V CMOS level,
C3 denotes 3.3V CMOS level, andT5 denotes 5V TTL level. Color resolution is abbreviated this way:m
denotes monochrome,c denotes low color resolution (less than 24 bits per pixel), andt denotes true color
(16 million colors).
Supported Displays Page 207

M
B

87J2120, M
B

87P
2020-A

 H
ardw

are M
anual

P
age 208

he CCFL backlight.

igital i/f
signals

max.
PixClk
(MHz)

Framerate
(Hz)

Power
Supply (V)

Type min max

C3 / C5b 10…20b ? ? ?

C5 6.5 70 80 5; -20

C5 6.5 59 125 5; -19

T5 12.2 59 120 5; 27

C5 12.2 73 73 5; 26
7.1 Passive Matrix LCD

None of the Passive Matrix Displays includes an inverter to produce the high voltage needed for t

Vendor Type Res.
X x Y

Bits
per

Pixel

Colors Scan # of
pixels

writtenat
once

d

#

Optrex DMF-50970NC 160 x 113 3 c singlea

a. special pixel order: pixels 1….160,y and 1….160, y+58 are written asone line

2 2/3 13

b. derived from used column driver ICs

Sharp LM32P10 320 x 240 1 m single 4 7

Sharp LM64P89 640 x 480 1 m dual
parallel

2 x 4 12

Sharp LM64C142 640 x 480 3 c dual
parallel

2 x (2 2/3) 20

Sanyo DG24320C5PC 320 x 240 3 c dual
parallel

2 x (1 1/3)
2 x (2 2/3)

21

G
raphic P

rocessing U
nit

S
upported D

isplays
P

age 209

7.2

All

V max.
PixClk
(MHz)

Framerate
(Hz)

Power
Supply (V)

CCFL
Inv.
incl.

min max

FP 26.8 55 65 5; 12 no

FP 26.8 55 65 5; 12 yes

FP 26.8 55 65 5; 12 yes

FP 26.8 55 65 5; 12 no

Sh 7.6 55 65 8; -5 no

Ho 13.3 50 70 5 no

NE 8.4 48 52 9.5 yes

NE /C5 29 58 62 3.3/5; 12 yes

NE 5 29 58 62 5 yes

Sa 20.2 51 71 12 yes

Sa 6.6 56 63 12 no
Active Matrix (TFT) Displays

Active Matrix Displays work in single scan mode.

endor Type Res.
X x Y

Bits per
Pixel

Colors # of
pixels

written
at once

i/f signals

analog
#

 digital

Type

D LDE052T-02 320 x 240 12 t 1 - 20 C5

D LDE052T-12 320 x 240 12 t 1 - 20 C5

D LDE052T-32 320 x 240 24 t 1 3 8 C5

D LDE052T-52 320 x 240 24 t 1 3 8 C5

arp LQ5AW116 320 x 234 24 t 1 3 9 C5

siden HLD0909 640 x 480 3 m 2 - 11 C5

C NL3224AC35-01 320 x 240 24 t 1 3 9 C5

C NL6448AC33-18 640 x 480 18 c 1 - 22 C3

C NL6448AC20-06 640 x 480 12 / 18 c 1 - 17 / 23 C

nyo ALP401RDD 320 x 240 24 t 1 3 5 T5

nyo ALP401RDV 320 x 240 24 t 1 - 29 T5

M
B

87J2120, M
B

87P
2020-A

 H
ardw

are M
anual

P
age 210

/f signals max.
PixClk
(MHz)

Framerate
(Hz)

Power Sup-
ply (V)

Type min max

C5 6,6 60 120 5; 12

C5 7.1 0 240 5; 12

C5 4.0 0 240 (5)a; 12

T5 5.1 0 120 (5); 12

C5 7.1 0 120 (5); 12

T5 25 75 5; 11….30b

T5 25 120 5; 11….30

T5 30 75 5; 11….30

T5 30 70 5; 12

T5 30 70 5; 24

T5 30 70 5; 11….30

C5 6.6 160 5; 12
7.3 Electroluminescent Displays

Vendor Type Res.
X x Y

Bits per
Pixel

Colors # of
pixels

writtenat
once

digital i

#

Sharp LJ32H028 320 x 240 1 m 4 7

Planar El160.80.50 160 x 80 1 m 4 8

Planar EL240.64 /
EL240.64-SD

240 x 64 1 m 1 6

Planar EL4737HB /
EL4737HB-ICE

320 x 128 1 m 1 5

Planar EL320.240.36 320 x 240 1 m 4 9

Planar EL320.256-F6
EL320.256-FD6

320 x 256 1 m 1 / 2 9

Planar EL320.256-FD7 320 x 256 1 m 1 / 2 8

Planar EL512.256-H 512 x 256 1 m 1 / 2 7

Planar EL640.400-CB1/
CD4

640 x 400 1 m 1 / 2 6

Planar EL640.400-CB3 640 x 400 1 m 1 / 2 6

Planar EL640.400-C2, -
C3, -C4

640 x 400 1 m 1 / 2 7

Planar EL640.400-CEx 640 x 400 1 m 1 / 2 x 4 16

G
raphic P

rocessing U
nit

S
upported D

isplays
P

age 211

Exc ys work in single scan mode.

7.4

Bot

6.5 120 5; 12

5 6.5 120 5; 24

5 30 80 5; 12

5 30 70 12

ls max.
PixClk
(MHz)

Framerate
(Hz)

Power Sup-
ply (V)

e min max

3 1.6 60 75 3.3; 7.2

5 6.0 50 350 5; 12

ls max.
PixClk
(MHz)

Framerate
(Hz)

Power Sup-
ply (V)

e min max
ept the Planar EL640.400-CEx, which has an optional dual scan mode, all electroluminescent displa

Field Emission Displays

h field emission displays work in single scan mode.

Planar EL640.480-AF1, -
AG1

640 x 480 1 m 2 x 4 11 C5

Planar EL640.480-AM8 640 x 480 1 m 2 x 4 11 C

Planar EL640.480-AA1 640 x 480 4 c 1 10 C

Planar EL640.480-ASB 640 x 480 4 m 1 / 2 16 T

a. optional

b. arbitrary within range

Vendor Type Res.
X x Y

Bits per
Pixel

Colors # of
pixels

writtenat
once

digital i/f signa

Typ

Motorola D07SPD310 128 x 160 9 c 1 14 C

PixTech FE532S-M1 320 x 240 1 m 4 9 T

Vendor Type Res.
X x Y

Bits per
Pixel

Colors # of
pixels

writtenat
once

digital i/f signa

Typ

MB87J2120, MB87P2020-A Hardware Manual

506,
ircuitry
trode
.9V

oltage
0.6V
oltage

d the
rec-

pro-

rked

hilips
7.5 Limitations for support

7.5.1 No Support due to VCOM Inversion

There were another two displays in the survey, the Fujitsu FLC15ADCAW and the Sharp LQ7BW
which suffer from a rather “substrate-oriented” interface. These displays do not have the necessary c
to prevent DC from the liquid crystal. Therefore, they require RGB input voltage and common elec
voltage (VCOM) be reversed every line. This inversion works as follows: For one line a voltage of e.g. -1
is applied to the common electrode. A voltage of 0.6V on the RGB inputs produces then a white, a v
of 4.6V a black display. The next line, the common electrode is clamped to 5.9V. Now, a voltage of
on RGB produces black and a voltage of 4.6V produces white. In other words: common electrode v
is alternated between -1.9 and 5.9V, while the voltagedifference for RGB remains at 4V but with alternating
result (color) for every line. This causes the following problems:

• There isno way to produce the voltages mentioned above on-chip within GDC, since they excee
limits of supply voltage by far. Therefore, additional external circuitry is indispensable (Sharp
ommend their dedicated video signal polarity reversing IC IR3Y29A).

• As the spec sheets state, the voltages actually used need to be fine-tuned forevery individual display
to obtain optimum contrast (i.e. VCOM DC component (mean level), VCOM AC component (voltage
difference), as well as RGB DC and AC components). This implies external potentiometers to
duce the bias voltages.

7.5.2 Problems due to 5V CMOS Interfaces

There is a number of displays, which demand 5V CMOS levels for their digital interface signals (ma
with “C5” in the respective column). This is problematic since the GDC-ASIC isnot able to guarantee the
correct “High”-level at its outputs since the ASIC runs at 3.3V.

Work-around: Either external pull-up resistors or special level shifter ICs are used as e.g. the P
74ALVC164245 dual supply translating transceiver.
Page 212

B-9 Cold Cathode Fluorescence
Light Driver (CCFL)
Page 213

MB87J2120, MB87P2020-A Hardware Manual
Page 214

CCFL Driver

lling a
ss of

d for

Port
orks

a syn-
al of
MCU

a sync
about
an be

es-
pulse
ary

ition
1 Introduction

The Cold Cathode Fluorescence Light Driver is used to generate the needed signals for contro
switched power supply and ionisation circuit of a cold cathode lamp. The intention was that brightne
the lamp should be adjustable in a wide range.

Following figure shows a block diagram of the circuit driving the cold cathode lamp which can be use
generating high voltage supplying the displays back light.

In general CCFL is independent from other GDC components. It is initialized via the Control Bus
(CBP) interface which is used to setup almost all GDC control registers. After initialization CCFL w
as stand-alone circuit.

To avoid interferences between back light flashing frequency and picture refresh rate of the display
chronization input is provided which internally is connected with the video frame synchronization sign
the Graphic Processing Unit (GPU). Another synchronization method is possible by the connected
over the control interface when writing to the synchronization flag of the control register.
MB87P2020-A has a connection to GPU sync mixer 5 as third synchronization possibility. Because
mixer can match many display coordinates within one GPU frame (see GPU description for details
sync signal generation) a higher CCFL frequency compared to simple frame synchronization c
achieved without losing synchronization between CCFL and display output.

In short terms the CCFL has the following synchronization possibilities:

• Internal GPU frame synchronization

• Software synchronization

• Internal sync mixer synchronization (MB87P2020-A only)

Simply spoken the CCFL circuit is a kind of pulse width modulation of lightning duration of the fluor
cence lamp within one frame period of the display. If the lamp is switched on CCFL provides bi-phase
signals (pins CCFL_FET1, CCFL_FET2) for direct controlling the complementary FET gates of prim
inductance of the voltage transverter. Additional to controlling the lightning and off durations the ign
of the lamp is handled (pins: CCFL_OFF, CCFL_IGNIT).

CCFL
CTRL

GPU

IGNIT

FET1

FET2

OFF

VIDEO

CBP

SYNC
Display

Inverter

Supply

GDC

Figure 1-1: Application overview for the CCFL circuit
Introduction Page 215

MB87J2120, MB87P2020-A Hardware Manual

tage
OFF
If a simple PWM output is needed (for CCFL supplies without direct FET connection or different vol
converter implementations) a low active PWM signal for brightness control is provided by the CCFL_
pin.
Page 216

CCFL Driver

ignal.
emaining

by the
etup
of the

ontrol-
le it

values
eriod,
2 Signal Waveform

2.1 General Description

The following figure shows a waveform example for the external signals and the synchronisation s
One cycle consists of five phases, a start-up phase, ionisation phase, pause, flash phase and the r
time until the rising edge of the synchronisation signal.

The duration of the start-up phase is fixed, the duration of the following three phases is determined
values of the registers IGNITE, PAUSE and FLASH. Normally IGNITE and PAUSE values are fixed s
to be optimal for the lamp characteristics. Brightness modulation is done by changing the duration
FLASH phase.

Table 2-1 describes the values of the external signals in each phase. While FET1 and FET2 directly c
ling the voltage converter, IGNIT and OFF are for controlling the height of input voltage or to disab
completely.

2.2 Duration of the Phases

The duration of the certain phases is determined by the value of the prescaler register SCALE and the
of the registers IGNITE, PAUSE and FLASH. The value of the prescaler register defines a base p
which is used to derive pulse shapes and duration of the phases.

tbper= tCLK · SCALE

Table 2-1: Phases of one CCFL cycle

Signal Value

Start-up
phase

Ionisation
phase

Pause Flash phase Remaining
time

FET1/FET2 low pulseda

a.see section 2.3

low pulseda low

IGNIT high high low low low

OFF low low low low high

FET2

IGNITE

Ignition PhaseStart−up Phase Off Time

FET1

OFF

Flash Phase

SYNC

1 sync period (normally display frame)

Pause

fixed setup flash duration modulation

Figure 2-1: Principle waveform of output signals relative to SYNC
Signal Waveform Page 217

MB87J2120, MB87P2020-A Hardware Manual

nal

lamp
unc-

n and

rated as
The duration of the appropriate phases calculates as follows:

15. Start-up phase:tstart= tbper · 8

16. Ionization phase:tion = tbper · 4 · IGNITE

17. Pause:tpause= tbper · 4 · PAUSE

18. Flash phase:tflash= tbper · 4 · FLASH

The fifth phase equals to the remaining off time until the next rising edge of the synchronisation sig

Note: If FLASH duration exceeds display frame duration the next synchronization will be dropped and
is off the next period after previous FLASH duration is ended. This could be result in flickering or malf
tion of the lamp.

2.3 Pulse shape of FET1 and FET2

The following figure shows the pulse shape of pulses, which have to be generated during Ionisatio
Flash phase.

If the end of a phase is reached during a high period of a pulse, a shortened pulse has to be gene
shown in the following figure.

FET1

FET2

1 cycle

7t 7tbper bper

1t bper1t bper

Figure 2-2: Timing definition of FET control signals

FET1

FET2

bper4t

1t bper

3/4 cycle

7t bper

Figure 2-3: Timing definition of FET control signals for fractured number of cycles
Page 218

CCFL Driver

Note

’0’.

o-

-

es
ed
3 Register Description

3.1 Overview

3.2 Control Bits

For MB87P2020-A an additional control bit for selecting sync mixer synchronization was necessary.
that this new control bit (CCFL1_SSEL) takes precedence over SNCS flag.
For other devices than MB87P2020-A writing to this control bit is ignored while reading returns always

Table 3-1: Control Register CCFL1

Name Description Position Reset Value Access

CCFL1_SSELa

a. MB87P2020-A only

Sync select 1 [28] 0 R/W

CCFL1_EN CCFL enable [27] 0 R/W

CCFL1_PROT Protect settings [26] 0 R/W

CCFL1_SNCS Sync select 0 [25] 0 R/W

CCFL1_SYNC Sync software trigger [24] 0 R/W

- reserved [23:8]

CCFL1_SCL Prescaler Register [7:0] 0 R/W

Table 3-2: Duration Register CCFL2

Name Description Position Reset Value Access

CCFL2_FLS Flash duration [31:16] 0 R/W

CCFL2_PSE Pause duration [15:8] 0 R/W

CCFL2_IGNT Ionisation duration (ignition) [7:0] 0 R/W

Table 3-3: Control bit description

Bit Name Description

28a CCFL1_SSEL SYNCSEL. If this bit is not set (0), synchronization is controlled by
SNCS. Otherwise (1) the output of GPU sync mixer 5 is used for synchr
nization.

27 CCFL1_EN COCADEN. If this bit is set, the Cold Cathode Driver is enabled. Other
wise the pins have its inactive state (FET1/2=0, IGNIT=0, OFF=1).

26 CCFL1_PROT PROTECT. If this bit is set, write access to the duration register chang
the value of the register, but the durations of the phases are not influenc
until this bit will be cleared.
If this bit is not set, a write access changes the durations immediately.
Register Description Page 219

MB87J2120, MB87P2020-A Hardware Manual
25 CCFL1_SNCS SYNCSEL. If this bit is not set (0), VSYNC display synchronisation is
enabled at each first active line. Otherwise (1) synchronisation by the
EXTYSYNC flag (software) will be used.

24 CCFL1_SYNC EXTSYNC. Setting these bit is interpreted as synchronization pulse if
SYNCSEL=1. The reset has to be done by software too.

a. MB87P2020-A only

Table 3-3: Control bit description

Bit Name Description
Page 220

CCFL Driver

CLKK

inly on

he re-

other

ency
n out-
onfig-
4 Application Notes

4.1 CCFL Setup Example

The time base of CCFL Driver should be near 800 ns. Assumed we have a system clock frequency
of 60 MHz (16.6 ns).

tbper = 800 ns

CCFL1_SCL = tCLKK / tbper = 800 ns / 16.6 ns = 48 = 0x30

We have to setup a prescaler value of 0x30 in the SCALE register.

Possible values for Ignition duration and Pause can be 0x10 and 0x80 for instance. This depends ma
the lamp characteristics and is not too critical for setting up the right value.

If we have a frame rate of 60 Hz so we get nearly

1 / 60Hz / 800ns = 20833 tbper = 0x5161 tbper cycles.

Due to the fact that setup duration values are interpreted as macro cycles of 4 times tbperone period has a
duration of

0x5161 tbper cycles / 4 = 0x1458 macro cycles.

After subtraction of 0x10 ignition time and 0x80 pause duration and 1 for the start-up phase we got t
sulting dimming range of 0x0000 to 0x13C7 macro cycles from dark to full luminescence.

Be careful not to setup a larger value for FLASH duration, then the lamp ignition may happen each
frame only and is flickering then.

4.2 CCFL Protection

During initialization of setup values there is no need to switch off the CCFL driver. To avoid inconsist
of configuration data a protection mechanism can be used. This method offers a way that no forbidde
put timing is generated and the lamp or the supply circuitry would not be damaged. To do a secure c
uration following sequence should be used:

1. Switch CCFL_PROT to ’1’

2. Configure CCFL2 duration registers.

3. Release protection by setting CCFL_PROT = ’0’

This gives the possibility to modulate the durations without switching the lamp off.
Application Notes Page 221

MB87J2120, MB87P2020-A Hardware Manual
Page 222

PART C - Pinning and Electrical
Specification
Page 223

MB87J2120, MB87P2020-A Hardware Manual
Page 224

Pinning for Lavender and Jasmine

ble 1-
xx.
1 Pinning and Buffer Types

1.1 Pinning for MB87P2020-A

1.1.1 Pinning

Table 1-1 shows the pinning for MB87P2020-A (redesigned Jasmine) sorted by pin number while ta
2 is sorted by names. Both tables refer to a standard Fujitsu 208-pin (L)QFP package FPT-208P-M

Table 1-1: MB87P2020-A pinning sorted by pin number

Pin Name Buffer type Description

1 MODE[0] BFNNQLX Mode Pin

2 MODE[1] BFNNQLX Mode Pin

3 GND GND

4 Place holder for analog area

5 A_GREEN OTAMX Analog Green

6 DAC2_VSSA1 ITAVSX DAC Ground

7 DAC2_VDDA1 ITAVDX DAC Supply 2.5V

8 A_BLUE OTAMX Analog Blue

9 DAC1_VDDA1 ITAVDX DAC Supply 2.5V

10 DAC1_VSSA1 ITAVSX DAC Ground

11 A_VRO OTAMX DAC Full Scale Adjust

12 DAC1_VSSA ITAVSX DAC Ground

13 DAC1_VDDA ITAVDX DAC Supply 2.5V

14 A_RED OTAMX Analog Red

15 DAC3_VDDA1 ITAVDX DAC Supply 2.5V

16 DAC3_VSSA1 ITAVSX DAC Ground

17 VREF ITAMX DAC test pin VREF

18 Place holder for analog area

19 VDDI VDDI# Core supply 2.5 V

20 TEST ITCHX Fujitsu test pin

21 VSC_CLKV ITFHX Video Scaler Clock

22 RESETX ITFHX Reset

23 OSC_OUT BX4MFSR2X XTAL output

24 VDDE[0] IO supply 3.3V

25 OSC_IN IXN3X XTAL input
Pinning and Buffer Types Page 225

MB87J2120, MB87P2020-A Hardware Manual
26 GND GND

27 VDDI VDDI# Core supply 2.5 V

28 RDY_TRIEN B3NNLMR2X Control RDY pin behaviour

29 APLL_AVDD APLL supply 2.5V

30 APLL_AVSS APLL GND

31 RCLK ITFHX Reserved clock

32 ULB_A[20] BFNNQLX ULB Interface Address

33 ULB_A[19] BFNNQLX ULB Interface Address

34 VDDI VDDI# Core supply 2.5 V

35 ULB_A[18] BFNNQLX ULB Interface Address

36 ULB_A[17] BFNNQLX ULB Interface Address

37 ULB_A[16] BFNNQLX ULB Interface Address

38 GND GND GND

39 ULB_A[15] BFNNQLX ULB Interface Address

40 ULB_A[14] BFNNQLX ULB Interface Address

41 ULB_A[13] BFNNQLX ULB Interface Address

42 ULB_A[12] BFNNQLX ULB Interface Address

43 VDDE VDDE# IO supply 3.3V

44 ULB_CLK ITFHX ULB Interface Clock

45 ULB_A[11] BFNNQLX ULB Interface Address

46 ULB_A[10] BFNNQLX ULB Interface Address

47 ULB_A[9] BFNNQLX ULB Interface Address

48 ULB_A[8] BFNNQLX ULB Interface Address

49 ULB_A[7] BFNNQLX ULB Interface Address

50 GND GND GND

51 ULB_A[6] BFNNQLX ULB Interface Address

52 ULB_A[5] BFNNQLX ULB Interface Address

53 ULB_A[4] BFNNQLX ULB Interface Address

54 ULB_A[3] BFNNQLX ULB Interface Address

55 ULB_A[2] BFNNQLX ULB Interface Address

56 ULB_A[1] BFNNQLX ULB Interface Address

57 ULB_A[0] BFNNQLX ULB Interface Address

58 ULB_CS BFNNQLX ULB Interface Chip Select

Table 1-1: MB87P2020-A pinning sorted by pin number

Pin Name Buffer type Description
Page 226

Pinning for Lavender and Jasmine
59 ULB_RDX BFNNQLX ULB Interface Read

60 GND GND GND

61 VDDE VDDE# IO supply 3.3V

62 ULB_DACK BFNNQLX ULB Interface DMA Acknowledge

63 ULB_D[31] BFNNQMX ULB Interface Data

64 ULB_D[30] BFNNQMX ULB Interface Data

65 ULB_D[29] BFNNQMX ULB Interface Data

66 GND[1] GND

67 VDDE[1] IO supply 3.3V

68 ULB_D[28] BFNNQMX ULB Interface Data

69 ULB_D[27] BFNNQMX ULB Interface Data

70 ULB_D[26] BFNNQMX ULB Interface Data

71 ULB_D[25] BFNNQMX ULB Interface Data

72 GND GND GND

73 VDDI VDDI# Core supply 2.5 V

74 VDDE[2] IO supply 3.3V

75 ULB_D[24] BFNNQMX ULB Interface Data

76 ULB_D[23] BFNNQMX ULB Interface Data

77 ULB_D[22] BFNNQMX ULB Interface Data

78 ULB_D[21] BFNNQMX ULB Interface Data

79 VDDI VDDI# Core supply 2.5 V

80 GND[2] GND

81 ULB_D[20] BFNNQMX ULB Interface Data

82 ULB_D[19] BFNNQMX ULB Interface Data

83 ULB_D[18] BFNNQMX ULB Interface Data

84 ULB_D[17] BFNNQMX ULB Interface Data

85 GND GND GND

86 VDDI VDDI# Core supply 2.5 V

87 ULB_D[16] BFNNQMX ULB Interface Data

88 ULB_D[15] BFNNQMX ULB Interface Data

89 ULB_D[14] BFNNQMX ULB Interface Data

90 ULB_D[13] BFNNQMX ULB Interface Data

91 GND[3] GND

Table 1-1: MB87P2020-A pinning sorted by pin number

Pin Name Buffer type Description
Pinning and Buffer Types Page 227

MB87J2120, MB87P2020-A Hardware Manual
92 VDDE[3] IO supply 3.3V

93 ULB_D[12] BFNNQMX ULB Interface Data

94 ULB_D[11] BFNNQMX ULB Interface Data

95 ULB_D[10] BFNNQMX ULB Interface Data

96 GND GND GND

97 VDDE VDDE# IO supply 3.3V

98 ULB_D[9] BFNNQMX ULB Interface Data

99 ULB_D[8] BFNNQMX ULB Interface Data

100 ULB_D[7] BFNNQMX ULB Interface Data

101 ULB_D[6] BFNNQMX ULB Interface Data

102 VDDE[4] IO supply 3.3V

103 GND[4] GND

104 ULB_D[5] BFNNQMX ULB Interface Data

105 ULB_D[4] BFNNQMX ULB Interface Data

106 ULB_D[3] BFNNQMX ULB Interface Data

107 GND GND GND

108 ULB_D[2] BFNNQMX ULB Interface Data

109 VDDE[5] IO supply 3.3V

110 SDRAM_VCC[0] SDRAM supply 2.5V

111 ULB_D[1] BFNNQMX ULB Interface Data

112 ULB_D[0] BFNNQMX ULB Interface Data

113 GND[5] GND

114 VDDE VDDE# IO supply 3.3V

115 SDRAM_VCC[1] SDRAM supply 2.5V

116 ULB_RDY OTFTQMX ULB Interface Ready

117 ULB_DSTP BFNNQMX ULB Interface DMA Stop

118 SDRAM_VCC[2] SDRAM supply 2.5V

119 GND GND GND

120 ULB_DREQ OTFTQMX ULB Interface DMA Request

121 ULB_INTRQ OTFTQMX ULB Interface Interrupt Request

122 ULB_WRX[0] ITFHX ULB Interface Write Enable (D[31:24])

123 VDDI VDDI# Core supply 2.5 V

124 ULB_WRX[1] ITFHX ULB Interface Write Enable (D[23:16])

Table 1-1: MB87P2020-A pinning sorted by pin number

Pin Name Buffer type Description
Page 228

Pinning for Lavender and Jasmine
125 SDRAM_VCC[3] SDRAM supply 2.5V

126 ULB_WRX[2] ITFHX ULB Interface Write Enable (D[15:8])

127 ULB_WRX[3] ITFHX ULB Interface Write Enable (D[7:0])

128 SDRAM_PBI IPBIX SDRAM Test mode

129 VDDE[7] IO supply 3.3V

130 GND GND GND

131 VDDI VDDI# Core supply 2.5 V

132 SDRAM_TBST ITBSTX SDRAM test mode

133 SDRAM_TTST ITTSTX SDRAM test mode

134 VPD VPDX Fujitsu Tester Pin

135 DIS_D[0] B3NNLMR2X Display Data

136 DIS_D[1] B3NNLMR2X Display Data

137 DIS_D[2] B3NNLMR2X Display Data

138 VDDI VDDI# Core supply 2.5 V

139 DIS_D[3] B3NNLMR2X Display Data

140 DIS_D[4] B3NNLMR2X Display Data

141 DIS_D[5] B3NNLMR2X Display Data

142 GND GND GND

143 DIS_D[6] B3NNLMR2X Display Data

144 DIS_D[7] B3NNLMR2X Display Data

145 DIS_D[8] B3NNLMR2X Display Data

146 DIS_D[9] B3NNLMR2X Display Data

147 VDDE VDDE# IO supply 3.3V

148 DIS_D[10] B3NNLMR2X Display Data

149 DIS_D[11] B3NNLMR2X Display Data

150 DIS_D[12] B3NNLMR2X Display Data

151 DIS_D[13] B3NNLMR2X Display Data

152 DIS_D[14] B3NNLMR2X Display Data

153 DIS_D[15] B3NNLMR2X Display Data

154 GND GND GND

155 VDDE[8] IO supply 3.3V

156 DIS_D[16] B3NNLMR2X Display Data

157 DIS_D[17] B3NNLMR2X Display Data

Table 1-1: MB87P2020-A pinning sorted by pin number

Pin Name Buffer type Description
Pinning and Buffer Types Page 229

MB87J2120, MB87P2020-A Hardware Manual
158 DIS_D[18] B3NNLMR2X Display Data

159 DIS_D[19] B3NNLMR2X Display Data

160 DIS_D[20] B3NNLMR2X Display Data

161 DIS_D[21] B3NNLMR2X Display Data

162 DIS_D[22] B3NNLMR2X Display Data

163 DIS_D[23] B3NNLMR2X Display Data

164 GND GND GND

165 VDDE VDDE# IO supply 3.3V

166 DIS_CKEY B3NNLMR2X Display Colour Key

167 DIS_PIXCLK B3NNNMR2X Display Pixel Clock (programmable in/out)

168 DIS_VSYNC B3NNLMR2X Display programmable sync

169 DIS_HSYNC B3NNLMR2X Display programmable sync

170 DIS_VREF B3NNLMR2X Display programmable sync

171 VSC_D[0] BFNNQLX Video Scaler Data Input

172 VSC_D[1] BFNNQLX Video Scaler Data Input

173 VSC_D[2] BFNNQLX Video Scaler Data Input

174 VSC_D[3] BFNNQLX Video Scaler Data Input

175 VSC_D[4] BFNNQLX Video Scaler Data Input

176 GND GND GND

177 VDDI VDDI# Core supply 2.5 V

178 VDDE[9] IO supply 3.3V

179 MODE[2] BFNNQLX Mode Pin

180 MODE[3] BFNNQLX Mode Pin

181 VSC_D[5] BFNNQLX Video Scaler Data Input

182 VSC_D[6] BFNNQLX Video Scaler Data Input

183 VDDI VDDI# Core supply 2.5 V

184 VSC_D[7] BFNNQLX Video Scaler Data Input

185 VSC_D[8] BFNNQLX Video Scaler Data Input

186 VSC_D[9] BFNNQLX Video Scaler Data Input

187 VSC_D[10] BFNNQLX Video Scaler Data Input

188 VSC_D[11] BFNNQLX Video Scaler Data Input

189 GND GND GND

190 VDDI VDDI# Core supply 2.5 V

Table 1-1: MB87P2020-A pinning sorted by pin number

Pin Name Buffer type Description
Page 230

Pinning for Lavender and Jasmine
191 VSC_D[12] BFNNQLX Video Scaler Data Input

192 VSC_D[13] BFNNQLX Video Scaler Data Input

193 VSC_D[14] BFNNQLX Video Scaler Data Input

194 VSC_D[15] BFNNQLX Video Scaler Data Input

195 VSC_VREF BFNNQLX Video Scaler Vertical Reference

196 VSC_VACT BFNNQLX Video Scaler VACT

197 VSC_ALPHA BFNNQLX Video Scaler ALPHA

198 VSC_IDENT BFNNQLX Video Scaler Field identification

199 SPB_BUS BFNNQHX SPB Interface

200 GND GND GND

201 VDDE VDDE# IO supply 3.3V

202 SPB_TST BFNNQHX SPB Test

203 CCFL_FET2 OTFTQMX CCFL FET driver

204 CCFL_FET1 OTFTQMX CCFL FET driver

205 CCFL_IGNIT OTFTQMX CCFL supply control IGNITION

206 GND[6] GND

207 VDDE[10] IO supply 3.3V

208 CCFL_OFF OTFTQMX CCFL supply control OFF

Table 1-2: MB87P2020-A pinning sorted by name

Pin Name Buffer type Description

4 Place holder for analog area

18 Place holder for analog area

8 A_BLUE OTAMX Analog Blue

5 A_GREEN OTAMX Analog Green

14 A_RED OTAMX Analog Red

11 A_VRO OTAMX DAC Full Scale Adjust

29 APLL_AVDD APLL supply 2.5V

30 APLL_AVSS APLL GND

204 CCFL_FET1 OTFTQMX CCFL FET driver

203 CCFL_FET2 OTFTQMX CCFL FET driver

205 CCFL_IGNIT OTFTQMX CCFL supply control IGNITION

Table 1-1: MB87P2020-A pinning sorted by pin number

Pin Name Buffer type Description
Pinning and Buffer Types Page 231

MB87J2120, MB87P2020-A Hardware Manual
208 CCFL_OFF OTFTQMX CCFL supply control OFF

13 DAC1_VDDA ITAVDX DAC Supply 2.5V

9 DAC1_VDDA1 ITAVDX DAC Supply 2.5V

12 DAC1_VSSA ITAVSX DAC Ground

10 DAC1_VSSA1 ITAVSX DAC Ground

7 DAC2_VDDA1 ITAVDX DAC Supply 2.5V

6 DAC2_VSSA1 ITAVSX DAC Ground

15 DAC3_VDDA1 ITAVDX DAC Supply 2.5V

16 DAC3_VSSA1 ITAVSX DAC Ground

166 DIS_CKEY B3NNLMR2X Display Colour Key

135 DIS_D[0] B3NNLMR2X Display Data

148 DIS_D[10] B3NNLMR2X Display Data

149 DIS_D[11] B3NNLMR2X Display Data

150 DIS_D[12] B3NNLMR2X Display Data

151 DIS_D[13] B3NNLMR2X Display Data

152 DIS_D[14] B3NNLMR2X Display Data

153 DIS_D[15] B3NNLMR2X Display Data

156 DIS_D[16] B3NNLMR2X Display Data

157 DIS_D[17] B3NNLMR2X Display Data

158 DIS_D[18] B3NNLMR2X Display Data

159 DIS_D[19] B3NNLMR2X Display Data

136 DIS_D[1] B3NNLMR2X Display Data

160 DIS_D[20] B3NNLMR2X Display Data

161 DIS_D[21] B3NNLMR2X Display Data

162 DIS_D[22] B3NNLMR2X Display Data

163 DIS_D[23] B3NNLMR2X Display Data

137 DIS_D[2] B3NNLMR2X Display Data

139 DIS_D[3] B3NNLMR2X Display Data

140 DIS_D[4] B3NNLMR2X Display Data

141 DIS_D[5] B3NNLMR2X Display Data

143 DIS_D[6] B3NNLMR2X Display Data

144 DIS_D[7] B3NNLMR2X Display Data

145 DIS_D[8] B3NNLMR2X Display Data

Table 1-2: MB87P2020-A pinning sorted by name

Pin Name Buffer type Description
Page 232

Pinning for Lavender and Jasmine
146 DIS_D[9] B3NNLMR2X Display Data

169 DIS_HSYNC B3NNLMR2X Display programmable sync

167 DIS_PIXCLK B3NNNMR2X Display Pixel Clock (programmable in/out)

170 DIS_VREF B3NNLMR2X Display programmable sync

168 DIS_VSYNC B3NNLMR2X Display programmable sync

3 GND GND

26 GND GND

38 GND GND GND

50 GND GND GND

60 GND GND GND

72 GND GND GND

85 GND GND GND

96 GND GND GND

107 GND GND GND

119 GND GND GND

130 GND GND GND

142 GND GND GND

154 GND GND GND

164 GND GND GND

176 GND GND GND

189 GND GND GND

200 GND GND GND

66 GND[1] GND

80 GND[2] GND

91 GND[3] GND

103 GND[4] GND

113 GND[5] GND

206 GND[6] GND

1 MODE[0] BFNNQLX Mode Pin

2 MODE[1] BFNNQLX Mode Pin

179 MODE[2] BFNNQLX Mode Pin

180 MODE[3] BFNNQLX Mode Pin

25 OSC_IN IXN3X XTAL input

Table 1-2: MB87P2020-A pinning sorted by name

Pin Name Buffer type Description
Pinning and Buffer Types Page 233

MB87J2120, MB87P2020-A Hardware Manual
23 OSC_OUT BX4MFSR2X XTAL output

31 RCLK ITFHX Reserved clock

28 RDY_TRIEN B3NNLMR2X Control RDY pin behaviour

22 RESETX ITFHX Reset

128 SDRAM_PBI IPBIX SDRAM Test mode

132 SDRAM_TBST ITBSTX SDRAM test mode

133 SDRAM_TTST ITTSTX SDRAM test mode

110 SDRAM_VCC[0] SDRAM supply 2.5V

115 SDRAM_VCC[1] SDRAM supply 2.5V

118 SDRAM_VCC[2] SDRAM supply 2.5V

125 SDRAM_VCC[3] SDRAM supply 2.5V

199 SPB_BUS BFNNQHX SPB Interface

202 SPB_TST BFNNQHX SPB Test

20 TEST ITCHX Fujitsu test pin

57 ULB_A[0] BFNNQLX ULB Interface Address

46 ULB_A[10] BFNNQLX ULB Interface Address

45 ULB_A[11] BFNNQLX ULB Interface Address

42 ULB_A[12] BFNNQLX ULB Interface Address

41 ULB_A[13] BFNNQLX ULB Interface Address

40 ULB_A[14] BFNNQLX ULB Interface Address

39 ULB_A[15] BFNNQLX ULB Interface Address

37 ULB_A[16] BFNNQLX ULB Interface Address

36 ULB_A[17] BFNNQLX ULB Interface Address

35 ULB_A[18] BFNNQLX ULB Interface Address

33 ULB_A[19] BFNNQLX ULB Interface Address

56 ULB_A[1] BFNNQLX ULB Interface Address

32 ULB_A[20] BFNNQLX ULB Interface Address

55 ULB_A[2] BFNNQLX ULB Interface Address

54 ULB_A[3] BFNNQLX ULB Interface Address

53 ULB_A[4] BFNNQLX ULB Interface Address

52 ULB_A[5] BFNNQLX ULB Interface Address

51 ULB_A[6] BFNNQLX ULB Interface Address

49 ULB_A[7] BFNNQLX ULB Interface Address

Table 1-2: MB87P2020-A pinning sorted by name

Pin Name Buffer type Description
Page 234

Pinning for Lavender and Jasmine
48 ULB_A[8] BFNNQLX ULB Interface Address

47 ULB_A[9] BFNNQLX ULB Interface Address

44 ULB_CLK ITFHX ULB Interface Clock

58 ULB_CS BFNNQLX ULB Interface Chip Select

112 ULB_D[0] BFNNQMX ULB Interface Data

95 ULB_D[10] BFNNQMX ULB Interface Data

94 ULB_D[11] BFNNQMX ULB Interface Data

93 ULB_D[12] BFNNQMX ULB Interface Data

90 ULB_D[13] BFNNQMX ULB Interface Data

89 ULB_D[14] BFNNQMX ULB Interface Data

88 ULB_D[15] BFNNQMX ULB Interface Data

87 ULB_D[16] BFNNQMX ULB Interface Data

84 ULB_D[17] BFNNQMX ULB Interface Data

83 ULB_D[18] BFNNQMX ULB Interface Data

82 ULB_D[19] BFNNQMX ULB Interface Data

111 ULB_D[1] BFNNQMX ULB Interface Data

81 ULB_D[20] BFNNQMX ULB Interface Data

78 ULB_D[21] BFNNQMX ULB Interface Data

77 ULB_D[22] BFNNQMX ULB Interface Data

76 ULB_D[23] BFNNQMX ULB Interface Data

75 ULB_D[24] BFNNQMX ULB Interface Data

71 ULB_D[25] BFNNQMX ULB Interface Data

70 ULB_D[26] BFNNQMX ULB Interface Data

69 ULB_D[27] BFNNQMX ULB Interface Data

68 ULB_D[28] BFNNQMX ULB Interface Data

65 ULB_D[29] BFNNQMX ULB Interface Data

108 ULB_D[2] BFNNQMX ULB Interface Data

64 ULB_D[30] BFNNQMX ULB Interface Data

63 ULB_D[31] BFNNQMX ULB Interface Data

106 ULB_D[3] BFNNQMX ULB Interface Data

105 ULB_D[4] BFNNQMX ULB Interface Data

104 ULB_D[5] BFNNQMX ULB Interface Data

101 ULB_D[6] BFNNQMX ULB Interface Data

Table 1-2: MB87P2020-A pinning sorted by name

Pin Name Buffer type Description
Pinning and Buffer Types Page 235

MB87J2120, MB87P2020-A Hardware Manual
100 ULB_D[7] BFNNQMX ULB Interface Data

99 ULB_D[8] BFNNQMX ULB Interface Data

98 ULB_D[9] BFNNQMX ULB Interface Data

62 ULB_DACK BFNNQLX ULB Interface DMA Acknowledge

120 ULB_DREQ OTFTQMX ULB Interface DMA Request

117 ULB_DSTP BFNNQMX ULB Interface DMA Stop

121 ULB_INTRQ OTFTQMX ULB Interface Interrupt Request

59 ULB_RDX BFNNQLX ULB Interface Read

116 ULB_RDY OTFTQMX ULB Interface Ready

122 ULB_WRX[0] ITFHX ULB Interface Write Enable (D[31:24])

124 ULB_WRX[1] ITFHX ULB Interface Write Enable (D[23:16])

126 ULB_WRX[2] ITFHX ULB Interface Write Enable (D[15:8])

127 ULB_WRX[3] ITFHX ULB Interface Write Enable (D[7:0])

43 VDDE VDDE# IO supply 3.3V

61 VDDE VDDE# IO supply 3.3V

97 VDDE VDDE# IO supply 3.3V

114 VDDE VDDE# IO supply 3.3V

147 VDDE VDDE# IO supply 3.3V

165 VDDE VDDE# IO supply 3.3V

201 VDDE VDDE# IO supply 3.3V

24 VDDE[0] IO supply 3.3V

207 VDDE[10] IO supply 3.3V

67 VDDE[1] IO supply 3.3V

74 VDDE[2] IO supply 3.3V

92 VDDE[3] IO supply 3.3V

102 VDDE[4] IO supply 3.3V

109 VDDE[5] IO supply 3.3V

129 VDDE[7] IO supply 3.3V

155 VDDE[8] IO supply 3.3V

178 VDDE[9] IO supply 3.3V

19 VDDI VDDI# Core supply 2.5 V

27 VDDI VDDI# Core supply 2.5 V

34 VDDI VDDI# Core supply 2.5 V

Table 1-2: MB87P2020-A pinning sorted by name

Pin Name Buffer type Description
Page 236

Pinning for Lavender and Jasmine
73 VDDI VDDI# Core supply 2.5 V

79 VDDI VDDI# Core supply 2.5 V

86 VDDI VDDI# Core supply 2.5 V

123 VDDI VDDI# Core supply 2.5 V

131 VDDI VDDI# Core supply 2.5 V

138 VDDI VDDI# Core supply 2.5 V

177 VDDI VDDI# Core supply 2.5 V

183 VDDI VDDI# Core supply 2.5 V

190 VDDI VDDI# Core supply 2.5 V

134 VPD VPDX Fujitsu Tester Pin

17 VREF ITAMX DAC test pin VREF

197 VSC_ALPHA BFNNQLX Video Scaler ALPHA

21 VSC_CLKV ITFHX Video Scaler Clock

171 VSC_D[0] BFNNQLX Video Scaler Data Input

187 VSC_D[10] BFNNQLX Video Scaler Data Input

188 VSC_D[11] BFNNQLX Video Scaler Data Input

191 VSC_D[12] BFNNQLX Video Scaler Data Input

192 VSC_D[13] BFNNQLX Video Scaler Data Input

193 VSC_D[14] BFNNQLX Video Scaler Data Input

194 VSC_D[15] BFNNQLX Video Scaler Data Input

172 VSC_D[1] BFNNQLX Video Scaler Data Input

173 VSC_D[2] BFNNQLX Video Scaler Data Input

174 VSC_D[3] BFNNQLX Video Scaler Data Input

175 VSC_D[4] BFNNQLX Video Scaler Data Input

181 VSC_D[5] BFNNQLX Video Scaler Data Input

182 VSC_D[6] BFNNQLX Video Scaler Data Input

184 VSC_D[7] BFNNQLX Video Scaler Data Input

185 VSC_D[8] BFNNQLX Video Scaler Data Input

186 VSC_D[9] BFNNQLX Video Scaler Data Input

198 VSC_IDENT BFNNQLX Video Scaler Field identification

196 VSC_VACT BFNNQLX Video Scaler VACT

195 VSC_VREF BFNNQLX Video Scaler Vertical Reference

Table 1-2: MB87P2020-A pinning sorted by name

Pin Name Buffer type Description
Pinning and Buffer Types Page 237

MB87J2120, MB87P2020-A Hardware Manual

ed by
1.1.2 Buffer types

Table 1-3 shows all used buffers for MB87P2020-A.

1.2 Pinning for MB87P2020

1.2.1 Pinning

Table 1-4 shows the pinning for MB87P2020 (Jasmine) sorted by pin number while table 1-5 is sort
names. Both tables refer to a standard Fujitsu 208-pin (L)QFP package FPT-208P-Mxx.

Table 1-3: Buffer types for MB87P2020-A

Buffer type Description

B3NNLMR2X Bidirectional True buffer (3.3V CMOS, IOL=4mA,Low Noise type, ESD
improved)

B3NNNMR2X Bidirectional True buffer (3.3V CMOS, IOL=4mA, ESD improved)

BFNNQHX Bidirectional True buffer (5V Tolerant, IOL=8mA, High speed type)

BFNNQLX Bidirectional True buffer (5V Tolerant, IOL=2mA, High speed type)

BFNNQMX 5V tolerant, bidirectional true buffer 3.3V CMOS, IOL/IOH=4mA

BX4MFSR2X Oscillator Output (ESD improved)

IPBIX Input True Buffer for DRAM TEST (2.5V CMOS with 25K Pull-up)
(SDRAM test only)

ITAMX Analog Input buffer

ITAVDX Analog Power Supply

ITAVSX Analog GND

ITBSTX Input True Buffer for DRAM TEST (2.5V CMOS with 25K Pull-down)
(SDRAM test only)

ITCHX Input True buffer (2.5V CMOS)

ITFHX 5V tolerant 3.3V CMOS Input

ITTSTX Input True buffer for DRAM TEST Control (2.5V CMOS with 25K Pull-down)

IXN3X Oscillator Input (ESD improved)

OTAMX Analog Output

OTFTQMX 5 V tolerant 3.3V tri-state output, IOL/IOH=4mA

VPDX 3.3V CMOS input, disable input for Pull up/down resistors, connect to GND

Table 1-4: MB87P2020 pinning sorted by pin number

Pin Name Buffer type Description

1 MODE[0] BFNNQLX Mode Pin

2 MODE[1] BFNNQLX Mode Pin

3 GND GND
Page 238

Pinning for Lavender and Jasmine
4 Place holder for analog area

5 A_GREEN OTAMX Analog Green

6 DAC2_VSSA1 ITAVSX DAC Ground

7 DAC2_VDDA1 ITAVDX DAC Supply 2.5V

8 A_BLUE OTAMX Analog Blue

9 DAC1_VDDA1 ITAVDX DAC Supply 2.5V

10 DAC1_VSSA1 ITAVSX DAC Ground

11 A_VRO OTAMX DAC Full Scale Adjust

12 DAC1_VSSA ITAVSX DAC Ground

13 DAC1_VDDA ITAVDX DAC Supply 2.5V

14 A_RED OTAMX Analog Red

15 DAC3_VDDA1 ITAVDX DAC Supply 2.5V

16 DAC3_VSSA1 ITAVSX DAC Ground

17 VREF ITAMX DAC test pin VREF

18 Place holder for analog area

19 VDDI VDDI# Core supply 2.5 V

20 TEST ITCHX Fujitsu test pin

21 VSC_CLKV ITFHX Video Scaler Clock

22 RESETX ITFUHX Reset (pull up)

23 OSC_OUT YB002AAX XTAL output

24 VDDE[0] IO supply 3.3V

25 OSC_IN YI002AEX XTAL input

26 GND GND

27 VDDI VDDI# Core supply 2.5 V

28 RDY_TRIEN B3NNLMX Control RDY pin behaviour

29 APLL_AVDD APLL supply 2.5V

30 APLL_AVSS APLL GND

31 RCLK ITFHX Reserved clock

32 ULB_A[20] BFNNQLX ULB Interface Address

33 ULB_A[19] BFNNQLX ULB Interface Address

34 VDDI VDDI# Core supply 2.5 V

35 ULB_A[18] BFNNQLX ULB Interface Address

36 ULB_A[17] BFNNQLX ULB Interface Address

Table 1-4: MB87P2020 pinning sorted by pin number

Pin Name Buffer type Description
Pinning and Buffer Types Page 239

MB87J2120, MB87P2020-A Hardware Manual
37 ULB_A[16] BFNNQLX ULB Interface Address

38 GND GND GND

39 ULB_A[15] BFNNQLX ULB Interface Address

40 ULB_A[14] BFNNQLX ULB Interface Address

41 ULB_A[13] BFNNQLX ULB Interface Address

42 ULB_A[12] BFNNQLX ULB Interface Address

43 VDDE VDDE# IO supply 3.3V

44 ULB_CLK ITFHX ULB Interface Clock

45 ULB_A[11] BFNNQLX ULB Interface Address

46 ULB_A[10] BFNNQLX ULB Interface Address

47 ULB_A[9] BFNNQLX ULB Interface Address

48 ULB_A[8] BFNNQLX ULB Interface Address

49 ULB_A[7] BFNNQLX ULB Interface Address

50 GND GND GND

51 ULB_A[6] BFNNQLX ULB Interface Address

52 ULB_A[5] BFNNQLX ULB Interface Address

53 ULB_A[4] BFNNQLX ULB Interface Address

54 ULB_A[3] BFNNQLX ULB Interface Address

55 ULB_A[2] BFNNQLX ULB Interface Address

56 ULB_A[1] BFNNQLX ULB Interface Address

57 ULB_A[0] BFNNQLX ULB Interface Address

58 ULB_CS BFNNQLX ULB Interface Chip Select

59 ULB_RDX BFNNQLX ULB Interface Read

60 GND GND GND

61 VDDE VDDE# IO supply 3.3V

62 ULB_DACK BFNNQLX ULB Interface DMA Acknowledge

63 ULB_D[31] BFNNQMX ULB Interface Data

64 ULB_D[30] BFNNQMX ULB Interface Data

65 ULB_D[29] BFNNQMX ULB Interface Data

66 GND[1] GND

67 VDDE[1] IO supply 3.3V

68 ULB_D[28] BFNNQMX ULB Interface Data

69 ULB_D[27] BFNNQMX ULB Interface Data

Table 1-4: MB87P2020 pinning sorted by pin number

Pin Name Buffer type Description
Page 240

Pinning for Lavender and Jasmine
70 ULB_D[26] BFNNQMX ULB Interface Data

71 ULB_D[25] BFNNQMX ULB Interface Data

72 GND GND GND

73 VDDI VDDI# Core supply 2.5 V

74 VDDE[2] IO supply 3.3V

75 ULB_D[24] BFNNQMX ULB Interface Data

76 ULB_D[23] BFNNQMX ULB Interface Data

77 ULB_D[22] BFNNQMX ULB Interface Data

78 ULB_D[21] BFNNQMX ULB Interface Data

79 VDDI VDDI# Core supply 2.5 V

80 GND[2] GND

81 ULB_D[20] BFNNQMX ULB Interface Data

82 ULB_D[19] BFNNQMX ULB Interface Data

83 ULB_D[18] BFNNQMX ULB Interface Data

84 ULB_D[17] BFNNQMX ULB Interface Data

85 GND GND GND

86 VDDI VDDI# Core supply 2.5 V

87 ULB_D[16] BFNNQMX ULB Interface Data

88 ULB_D[15] BFNNQMX ULB Interface Data

89 ULB_D[14] BFNNQMX ULB Interface Data

90 ULB_D[13] BFNNQMX ULB Interface Data

91 GND[3] GND

92 VDDE[3] IO supply 3.3V

93 ULB_D[12] BFNNQMX ULB Interface Data

94 ULB_D[11] BFNNQMX ULB Interface Data

95 ULB_D[10] BFNNQMX ULB Interface Data

96 GND GND GND

97 VDDE VDDE# IO supply 3.3V

98 ULB_D[9] BFNNQMX ULB Interface Data

99 ULB_D[8] BFNNQMX ULB Interface Data

100 ULB_D[7] BFNNQMX ULB Interface Data

101 ULB_D[6] BFNNQMX ULB Interface Data

102 VDDE[4] IO supply 3.3V

Table 1-4: MB87P2020 pinning sorted by pin number

Pin Name Buffer type Description
Pinning and Buffer Types Page 241

MB87J2120, MB87P2020-A Hardware Manual
103 GND[4] GND

104 ULB_D[5] BFNNQMX ULB Interface Data

105 ULB_D[4] BFNNQMX ULB Interface Data

106 ULB_D[3] BFNNQMX ULB Interface Data

107 GND GND GND

108 ULB_D[2] BFNNQMX ULB Interface Data

109 VDDE[5] IO supply 3.3V

110 SDRAM_VCC[0] SDRAM supply 2.5V

111 ULB_D[1] BFNNQMX ULB Interface Data

112 ULB_D[0] BFNNQMX ULB Interface Data

113 GND[5] GND

114 VDDE VDDE# IO supply 3.3V

115 SDRAM_VCC[1] SDRAM supply 2.5V

116 ULB_RDY OTFTQMX ULB Interface Ready

117 ULB_DSTP BFNNQMX ULB Interface DMA Stop

118 SDRAM_VCC[2] SDRAM supply 2.5V

119 GND GND GND

120 ULB_DREQ OTFTQMX ULB Interface DMA Request

121 ULB_INTRQ OTFTQMX ULB Interface Interrupt Request

122 ULB_WRX[0] ITFHX ULB Interface Write Enable (D[31:24])

123 VDDI VDDI# Core supply 2.5 V

124 ULB_WRX[1] ITFHX ULB Interface Write Enable (D[23:16])

125 SDRAM_VCC[3] SDRAM supply 2.5V

126 ULB_WRX[2] ITFHX ULB Interface Write Enable (D[15:8])

127 ULB_WRX[3] ITFHX ULB Interface Write Enable (D[7:0])

128 SDRAM_PBI IPBIX SDRAM Test mode

129 VDDE[7] IO supply 3.3V

130 GND GND GND

131 VDDI VDDI# Core supply 2.5 V

132 SDRAM_TBST ITBSTX SDRAM test mode

133 SDRAM_TTST ITTSTX SDRAM test mode

134 VPD VPDX Fujitsu Tester Pin

135 DIS_D[0] B3NNLMX Display Data

Table 1-4: MB87P2020 pinning sorted by pin number

Pin Name Buffer type Description
Page 242

Pinning for Lavender and Jasmine
136 DIS_D[1] B3NNLMX Display Data

137 DIS_D[2] B3NNLMX Display Data

138 VDDI VDDI# Core supply 2.5 V

139 DIS_D[3] B3NNLMX Display Data

140 DIS_D[4] B3NNLMX Display Data

141 DIS_D[5] B3NNLMX Display Data

142 GND GND GND

143 DIS_D[6] B3NNLMX Display Data

144 DIS_D[7] B3NNLMX Display Data

145 DIS_D[8] B3NNLMX Display Data

146 DIS_D[9] B3NNLMX Display Data

147 VDDE VDDE# IO supply 3.3V

148 DIS_D[10] B3NNLMX Display Data

149 DIS_D[11] B3NNLMX Display Data

150 DIS_D[12] B3NNLMX Display Data

151 DIS_D[13] B3NNLMX Display Data

152 DIS_D[14] B3NNLMX Display Data

153 DIS_D[15] B3NNLMX Display Data

154 GND GND GND

155 VDDE[8] IO supply 3.3V

156 DIS_D[16] B3NNLMX Display Data

157 DIS_D[17] B3NNLMX Display Data

158 DIS_D[18] B3NNLMX Display Data

159 DIS_D[19] B3NNLMX Display Data

160 DIS_D[20] B3NNLMX Display Data

161 DIS_D[21] B3NNLMX Display Data

162 DIS_D[22] B3NNLMX Display Data

163 DIS_D[23] B3NNLMX Display Data

164 GND GND GND

165 VDDE VDDE# IO supply 3.3V

166 DIS_CKEY B3NNLMX Display Colour Key

167 DIS_PIXCLK B3NNNMX Display Pixel Clock (programmable in/out)

168 DIS_VSYNC B3NNLMX Display programmable sync

Table 1-4: MB87P2020 pinning sorted by pin number

Pin Name Buffer type Description
Pinning and Buffer Types Page 243

MB87J2120, MB87P2020-A Hardware Manual
169 DIS_HSYNC B3NNLMX Display programmable sync

170 DIS_VREF B3NNLMX Display programmable sync

171 VSC_D[0] BFNNQLX Video Scaler Data Input

172 VSC_D[1] BFNNQLX Video Scaler Data Input

173 VSC_D[2] BFNNQLX Video Scaler Data Input

174 VSC_D[3] BFNNQLX Video Scaler Data Input

175 VSC_D[4] BFNNQLX Video Scaler Data Input

176 GND GND GND

177 VDDI VDDI# Core supply 2.5 V

178 VDDE[9] IO supply 3.3V

179 MODE[2] BFNNQLX Mode Pin

180 MODE[3] BFNNQLX Mode Pin

181 VSC_D[5] BFNNQLX Video Scaler Data Input

182 VSC_D[6] BFNNQLX Video Scaler Data Input

183 VDDI VDDI# Core supply 2.5 V

184 VSC_D[7] BFNNQLX Video Scaler Data Input

185 VSC_D[8] BFNNQLX Video Scaler Data Input

186 VSC_D[9] BFNNQLX Video Scaler Data Input

187 VSC_D[10] BFNNQLX Video Scaler Data Input

188 VSC_D[11] BFNNQLX Video Scaler Data Input

189 GND GND GND

190 VDDI VDDI# Core supply 2.5 V

191 VSC_D[12] BFNNQLX Video Scaler Data Input

192 VSC_D[13] BFNNQLX Video Scaler Data Input

193 VSC_D[14] BFNNQLX Video Scaler Data Input

194 VSC_D[15] BFNNQLX Video Scaler Data Input

195 VSC_VREF BFNNQLX Video Scaler Vertical Reference

196 VSC_VACT BFNNQLX Video Scaler VACT

197 VSC_ALPHA BFNNQLX Video Scaler ALPHA

198 VSC_IDENT BFNNQLX Video Scaler Field identification

199 SPB_BUS BFNNQHX SPB Interface

200 GND GND GND

201 VDDE VDDE# IO supply 3.3V

Table 1-4: MB87P2020 pinning sorted by pin number

Pin Name Buffer type Description
Page 244

Pinning for Lavender and Jasmine
202 SPB_TST BFNNQHX SPB Test

203 CCFL_FET2 OTFTQMX CCFL FET driver

204 CCFL_FET1 OTFTQMX CCFL FET driver

205 CCFL_IGNIT OTFTQMX CCFL supply control IGNITION

206 GND[6] GND

207 VDDE[10] IO supply 3.3V

208 CCFL_OFF OTFTQMX CCFL supply control OFF

Table 1-5: MB87P2020 pinning sorted by name

Pin Name Buffer type Description

4 Place holder for analog area

18 Place holder for analog area

8 A_BLUE OTAMX Analog Blue

5 A_GREEN OTAMX Analog Green

14 A_RED OTAMX Analog Red

11 A_VRO OTAMX DAC Full Scale Adjust

29 APLL_AVDD APLL supply 2.5V

30 APLL_AVSS APLL GND

204 CCFL_FET1 OTFTQMX CCFL FET driver

203 CCFL_FET2 OTFTQMX CCFL FET driver

205 CCFL_IGNIT OTFTQMX CCFL supply control IGNITION

208 CCFL_OFF OTFTQMX CCFL supply control OFF

13 DAC1_VDDA ITAVDX DAC Supply 2.5V

9 DAC1_VDDA1 ITAVDX DAC Supply 2.5V

12 DAC1_VSSA ITAVSX DAC Ground

10 DAC1_VSSA1 ITAVSX DAC Ground

7 DAC2_VDDA1 ITAVDX DAC Supply 2.5V

6 DAC2_VSSA1 ITAVSX DAC Ground

15 DAC3_VDDA1 ITAVDX DAC Supply 2.5V

16 DAC3_VSSA1 ITAVSX DAC Ground

166 DIS_CKEY B3NNLMX Display Colour Key

135 DIS_D[0] B3NNLMX Display Data

Table 1-4: MB87P2020 pinning sorted by pin number

Pin Name Buffer type Description
Pinning and Buffer Types Page 245

MB87J2120, MB87P2020-A Hardware Manual
148 DIS_D[10] B3NNLMX Display Data

149 DIS_D[11] B3NNLMX Display Data

150 DIS_D[12] B3NNLMX Display Data

151 DIS_D[13] B3NNLMX Display Data

152 DIS_D[14] B3NNLMX Display Data

153 DIS_D[15] B3NNLMX Display Data

156 DIS_D[16] B3NNLMX Display Data

157 DIS_D[17] B3NNLMX Display Data

158 DIS_D[18] B3NNLMX Display Data

159 DIS_D[19] B3NNLMX Display Data

136 DIS_D[1] B3NNLMX Display Data

160 DIS_D[20] B3NNLMX Display Data

161 DIS_D[21] B3NNLMX Display Data

162 DIS_D[22] B3NNLMX Display Data

163 DIS_D[23] B3NNLMX Display Data

137 DIS_D[2] B3NNLMX Display Data

139 DIS_D[3] B3NNLMX Display Data

140 DIS_D[4] B3NNLMX Display Data

141 DIS_D[5] B3NNLMX Display Data

143 DIS_D[6] B3NNLMX Display Data

144 DIS_D[7] B3NNLMX Display Data

145 DIS_D[8] B3NNLMX Display Data

146 DIS_D[9] B3NNLMX Display Data

169 DIS_HSYNC B3NNLMX Display programmable sync

167 DIS_PIXCLK B3NNNMX Display Pixel Clock (programmable in/out)

170 DIS_VREF B3NNLMX Display programmable sync

168 DIS_VSYNC B3NNLMX Display programmable sync

3 GND GND

26 GND GND

38 GND GND GND

50 GND GND GND

60 GND GND GND

72 GND GND GND

Table 1-5: MB87P2020 pinning sorted by name

Pin Name Buffer type Description
Page 246

Pinning for Lavender and Jasmine
85 GND GND GND

96 GND GND GND

107 GND GND GND

119 GND GND GND

130 GND GND GND

142 GND GND GND

154 GND GND GND

164 GND GND GND

176 GND GND GND

189 GND GND GND

200 GND GND GND

66 GND[1] GND

80 GND[2] GND

91 GND[3] GND

103 GND[4] GND

113 GND[5] GND

206 GND[6] GND

1 MODE[0] BFNNQLX Mode Pin

2 MODE[1] BFNNQLX Mode Pin

179 MODE[2] BFNNQLX Mode Pin

180 MODE[3] BFNNQLX Mode Pin

25 OSC_IN YI002AEX XTAL input

23 OSC_OUT YB002AAX XTAL output

31 RCLK ITFHX Reserved clock

28 RDY_TRIEN B3NNLMX Control RDY pin behaviour

22 RESETX ITFUHX Reset (pull up)

128 SDRAM_PBI IPBIX SDRAM Test mode

132 SDRAM_TBST ITBSTX SDRAM test mode

133 SDRAM_TTST ITTSTX SDRAM test mode

110 SDRAM_VCC[0] SDRAM supply 2.5V

115 SDRAM_VCC[1] SDRAM supply 2.5V

118 SDRAM_VCC[2] SDRAM supply 2.5V

125 SDRAM_VCC[3] SDRAM supply 2.5V

Table 1-5: MB87P2020 pinning sorted by name

Pin Name Buffer type Description
Pinning and Buffer Types Page 247

MB87J2120, MB87P2020-A Hardware Manual
199 SPB_BUS BFNNQHX SPB Interface

202 SPB_TST BFNNQHX SPB Test

20 TEST ITCHX Fujitsu test pin

57 ULB_A[0] BFNNQLX ULB Interface Address

46 ULB_A[10] BFNNQLX ULB Interface Address

45 ULB_A[11] BFNNQLX ULB Interface Address

42 ULB_A[12] BFNNQLX ULB Interface Address

41 ULB_A[13] BFNNQLX ULB Interface Address

40 ULB_A[14] BFNNQLX ULB Interface Address

39 ULB_A[15] BFNNQLX ULB Interface Address

37 ULB_A[16] BFNNQLX ULB Interface Address

36 ULB_A[17] BFNNQLX ULB Interface Address

35 ULB_A[18] BFNNQLX ULB Interface Address

33 ULB_A[19] BFNNQLX ULB Interface Address

56 ULB_A[1] BFNNQLX ULB Interface Address

32 ULB_A[20] BFNNQLX ULB Interface Address

55 ULB_A[2] BFNNQLX ULB Interface Address

54 ULB_A[3] BFNNQLX ULB Interface Address

53 ULB_A[4] BFNNQLX ULB Interface Address

52 ULB_A[5] BFNNQLX ULB Interface Address

51 ULB_A[6] BFNNQLX ULB Interface Address

49 ULB_A[7] BFNNQLX ULB Interface Address

48 ULB_A[8] BFNNQLX ULB Interface Address

47 ULB_A[9] BFNNQLX ULB Interface Address

44 ULB_CLK ITFHX ULB Interface Clock

58 ULB_CS BFNNQLX ULB Interface Chip Select

112 ULB_D[0] BFNNQMX ULB Interface Data

95 ULB_D[10] BFNNQMX ULB Interface Data

94 ULB_D[11] BFNNQMX ULB Interface Data

93 ULB_D[12] BFNNQMX ULB Interface Data

90 ULB_D[13] BFNNQMX ULB Interface Data

89 ULB_D[14] BFNNQMX ULB Interface Data

88 ULB_D[15] BFNNQMX ULB Interface Data

Table 1-5: MB87P2020 pinning sorted by name

Pin Name Buffer type Description
Page 248

Pinning for Lavender and Jasmine
87 ULB_D[16] BFNNQMX ULB Interface Data

84 ULB_D[17] BFNNQMX ULB Interface Data

83 ULB_D[18] BFNNQMX ULB Interface Data

82 ULB_D[19] BFNNQMX ULB Interface Data

111 ULB_D[1] BFNNQMX ULB Interface Data

81 ULB_D[20] BFNNQMX ULB Interface Data

78 ULB_D[21] BFNNQMX ULB Interface Data

77 ULB_D[22] BFNNQMX ULB Interface Data

76 ULB_D[23] BFNNQMX ULB Interface Data

75 ULB_D[24] BFNNQMX ULB Interface Data

71 ULB_D[25] BFNNQMX ULB Interface Data

70 ULB_D[26] BFNNQMX ULB Interface Data

69 ULB_D[27] BFNNQMX ULB Interface Data

68 ULB_D[28] BFNNQMX ULB Interface Data

65 ULB_D[29] BFNNQMX ULB Interface Data

108 ULB_D[2] BFNNQMX ULB Interface Data

64 ULB_D[30] BFNNQMX ULB Interface Data

63 ULB_D[31] BFNNQMX ULB Interface Data

106 ULB_D[3] BFNNQMX ULB Interface Data

105 ULB_D[4] BFNNQMX ULB Interface Data

104 ULB_D[5] BFNNQMX ULB Interface Data

101 ULB_D[6] BFNNQMX ULB Interface Data

100 ULB_D[7] BFNNQMX ULB Interface Data

99 ULB_D[8] BFNNQMX ULB Interface Data

98 ULB_D[9] BFNNQMX ULB Interface Data

62 ULB_DACK BFNNQLX ULB Interface DMA Acknowledge

120 ULB_DREQ OTFTQMX ULB Interface DMA Request

117 ULB_DSTP BFNNQMX ULB Interface DMA Stop

121 ULB_INTRQ OTFTQMX ULB Interface Interrupt Request

59 ULB_RDX BFNNQLX ULB Interface Read

116 ULB_RDY OTFTQMX ULB Interface Ready

122 ULB_WRX[0] ITFHX ULB Interface Write Enable (D[31:24])

124 ULB_WRX[1] ITFHX ULB Interface Write Enable (D[23:16])

Table 1-5: MB87P2020 pinning sorted by name

Pin Name Buffer type Description
Pinning and Buffer Types Page 249

MB87J2120, MB87P2020-A Hardware Manual
126 ULB_WRX[2] ITFHX ULB Interface Write Enable (D[15:8])

127 ULB_WRX[3] ITFHX ULB Interface Write Enable (D[7:0])

43 VDDE VDDE# IO supply 3.3V

61 VDDE VDDE# IO supply 3.3V

97 VDDE VDDE# IO supply 3.3V

114 VDDE VDDE# IO supply 3.3V

147 VDDE VDDE# IO supply 3.3V

165 VDDE VDDE# IO supply 3.3V

201 VDDE VDDE# IO supply 3.3V

24 VDDE[0] IO supply 3.3V

207 VDDE[10] IO supply 3.3V

67 VDDE[1] IO supply 3.3V

74 VDDE[2] IO supply 3.3V

92 VDDE[3] IO supply 3.3V

102 VDDE[4] IO supply 3.3V

109 VDDE[5] IO supply 3.3V

129 VDDE[7] IO supply 3.3V

155 VDDE[8] IO supply 3.3V

178 VDDE[9] IO supply 3.3V

19 VDDI VDDI# Core supply 2.5 V

27 VDDI VDDI# Core supply 2.5 V

34 VDDI VDDI# Core supply 2.5 V

73 VDDI VDDI# Core supply 2.5 V

79 VDDI VDDI# Core supply 2.5 V

86 VDDI VDDI# Core supply 2.5 V

123 VDDI VDDI# Core supply 2.5 V

131 VDDI VDDI# Core supply 2.5 V

138 VDDI VDDI# Core supply 2.5 V

177 VDDI VDDI# Core supply 2.5 V

183 VDDI VDDI# Core supply 2.5 V

190 VDDI VDDI# Core supply 2.5 V

134 VPD VPDX Fujitsu Tester Pin

17 VREF ITAMX DAC test pin VREF

Table 1-5: MB87P2020 pinning sorted by name

Pin Name Buffer type Description
Page 250

Pinning for Lavender and Jasmine
1.2.2 Buffer types

Table 1-6 shows all used buffers for MB87P2020.

197 VSC_ALPHA BFNNQLX Video Scaler ALPHA

21 VSC_CLKV ITFHX Video Scaler Clock

171 VSC_D[0] BFNNQLX Video Scaler Data Input

187 VSC_D[10] BFNNQLX Video Scaler Data Input

188 VSC_D[11] BFNNQLX Video Scaler Data Input

191 VSC_D[12] BFNNQLX Video Scaler Data Input

192 VSC_D[13] BFNNQLX Video Scaler Data Input

193 VSC_D[14] BFNNQLX Video Scaler Data Input

194 VSC_D[15] BFNNQLX Video Scaler Data Input

172 VSC_D[1] BFNNQLX Video Scaler Data Input

173 VSC_D[2] BFNNQLX Video Scaler Data Input

174 VSC_D[3] BFNNQLX Video Scaler Data Input

175 VSC_D[4] BFNNQLX Video Scaler Data Input

181 VSC_D[5] BFNNQLX Video Scaler Data Input

182 VSC_D[6] BFNNQLX Video Scaler Data Input

184 VSC_D[7] BFNNQLX Video Scaler Data Input

185 VSC_D[8] BFNNQLX Video Scaler Data Input

186 VSC_D[9] BFNNQLX Video Scaler Data Input

198 VSC_IDENT BFNNQLX Video Scaler Field identification

196 VSC_VACT BFNNQLX Video Scaler VACT

195 VSC_VREF BFNNQLX Video Scaler Vertical Reference

Table 1-6: Buffer types for MB87P2020

Buffer type Description

B3NNLMX Bidirectional True buffer (3.3V CMOS, IOL=4mA,Low Noise type)

B3NNNMX Bidirectional True buffer (3.3V CMOS, IOL=4mA)

BFNNQHX Bidirectional True buffer (5V Tolerant, IOL=8mA, High speed type)

BFNNQLX Bidirectional True buffer (5V Tolerant, IOL=2mA, High speed type)

BFNNQMX 5V tolerant, bidirectional true buffer 3.3V CMOS, IOL/IOH=4mA

IPBIX Input True Buffer for DRAM TEST (2.5V CMOS with 25K Pull-up)
(SDRAM test only)

Table 1-5: MB87P2020 pinning sorted by name

Pin Name Buffer type Description
Pinning and Buffer Types Page 251

MB87J2120, MB87P2020-A Hardware Manual

ed by
1.3 Pinning for MB87J2120

1.3.1 Pinning

Table 1-7 shows the pinning for MB87J2120 (Lavender) sorted by pin number while table 1-8 is sort
names. Both tables refer to a standard Fujitsu 256-pin BGA package (BGA-256P-M01).

ITAMX Analog Input buffer

ITAVDX Analog Power Supply

ITAVSX Analog GND

ITBSTX Input True Buffer for DRAM TEST (2.5V CMOS with 25K Pull-down)
(SDRAM test only)

ITCHX Input True buffer (2.5V CMOS)

ITFHX 5V tolerant 3.3V CMOS Input

ITFUHX 5V tolerant 3.3V CMOS Input, 25 k Pull-up

ITTSTX Input True buffer for DRAM TEST Control (2.5V CMOS with 25K Pull-down)

OTAMX Analog Output

OTFTQMX 5 V tolerant 3.3V tri-state output, IOL/IOH=4mA

VPDX 3.3V CMOS input, disable input for Pull up/down resistors, connect to GND

YB002AAX Oscillator Output

YI002AEX Oscillator Input

Table 1-7: MB87J2120 pinning sorted by pin number

Pin Name Buffer Type Description

1 GND GND GND

2 DAC3_VSSA1_2 ITAVSX DAC Ground

3 A_BLUE OTAMX Analog Blue

4 Spacer, n.c.

5 A_GREEN OTAMX Analog Green

6 DAC1_VDDA ITAVDX DAC Supply 2.5V

7 VPD VPDX Fujitsu Tester Pin

8 DIS_D[1] YB3NNLMX Display Data

9 DIS_D[6] YB3NNLMX Display Data

10 DIS_D[8] YB3NNLMX Display Data

Table 1-6: Buffer types for MB87P2020

Buffer type Description
Page 252

Pinning for Lavender and Jasmine
11 VDDE[0] OVDD3X IO supply 3.3V

12 DIS_D[13] YB3NNLMX Display Data

13 GND[0] OVSSX GND

14 DIS_D[14] YB3NNLMX Display Data

15 DIS_D[19] YB3NNLMX Display Data

16 GND[1] OVSSX GND

17 DIS_D[22] YB3NNLMX Display Data

18 DIS_VSYNC YB3NNLMX Display programmable sync

19 DIS_D[20] YB3NNLMX Display Data

20 GND GND GND

21 ULB_D[14] BFNNQMX ULB Interface Data

22 ULB_D[8] BFNNQMX ULB Interface Data

23 ULB_D[4] BFNNQMX ULB Interface Data

24 ULB_D[5] BFNNQMX ULB Interface Data

25 ULB_D[11] BFNNQMX ULB Interface Data

26 VDDE[9] OVDD3X IO supply 3.3V

27 ULB_D[20] BFNNQMX ULB Interface Data

28 ULB_WRX[2] ITFHX ULB Interface Byte 2 Write Enable

29 ULB_WRX[1] ITFHX ULB Interface Byte 1 Write Enable

30 ULB_D[26] BFNNQMX ULB Interface Data

31 ULB_D[30] BFNNQMX ULB Interface Data

32 ULB_D[25] BFNNQMX ULB Interface Data

33 ULB_D[31] BFNNQMX ULB Interface Data

34 ULB_CLK ITFHX ULB Interface Clock

35 ULB_A[7] ITFHX ULB Interface Address

36 ULB_WRX[3] ITFHX ULB Interface Byte 3 Write Enable

37 ULB_A[10] ITFHX ULB Interface Address

38 ULB_A[2] ITFHX ULB Interface Address

39 GND GND GND

40 ULB_INTRQ OTFTQMX ULB Interface Interrupt Output

41 GND[3] OVSSX GND

42 ULB_A[17] ITFHX ULB Interface Address

43 ULB_A[18] ITFHX ULB Interface Address

Table 1-7: MB87J2120 pinning sorted by pin number

Pin Name Buffer Type Description
Pinning and Buffer Types Page 253

MB87J2120, MB87P2020-A Hardware Manual
44 ULB_DACK ITFHX ULB Interface DMA Acknowledge

45 SDC_D[3] YB3NNLMX SDRAM Data

46 SDC_D[7] YB3NNLMX SDRAM Data

47 SDC_D[11] YB3NNLMX SDRAM Data

48 VDDE[4] OVDD3X IO supply 3.3V

49 GND[10] OVSSX GND

50 SDC_D[15] YB3NNLMX SDRAM Data

51 SDC_CKE YB3DNLMX SDRAM Clock Enable

52 SDC_D[16] YB3NNLMX SDRAM Data

53 SDC_D[21] YB3NNLMX SDRAM Data

54 GND[5] OVSSX GND

55 SDC_A[0] YB3NNLMX SDRAM Address

56 SDC_D[28] YB3NNLMX SDRAM Data

57 SDC_D[22] YB3NNLMX SDRAM Data

58 GND GND GND

59 SDC_CAS YB3NNLMX SDRAM CAS

60 SDC_A[7] YB3NNLMX SDRAM Address

61 SDC_A[3] YB3NNLMX SDRAM Address

62 SDC_A[4] YB3NNLMX SDRAM Address

63 SDC_A[10] YB3NNLMX SDRAM Address

64 SBP_BUS BFUNQHX SPB Interface

65 MODE[3] ITFUHX GDC Mode Pin (pull up)

66 CCFL_FET2 OTFTQMX CCFL FET driver

67 CCFL_IGNIT OTFTQMX CCFL supply control IGNITION

68 GND[11] OVSSX GND

69 MODE[0] ITFUHX GDC Mode Pin (pull up)

70 MODE[1] ITFUHX GDC Mode Pin (pull up)

71 AVDD[5] APLL APLL supply 2.5V

72 VSC_D[7] ITFHX Video Scaler Data Input

73 VSC_ALPHA ITFHX Video Scaler ALPHA

74 VSC_CLKV ITFHX Video Scaler Clock

75 VSC_D[14] ITFHX Video Scaler Data Input

76 VSC_D[6] ITFHX Video Scaler Data Input

Table 1-7: MB87J2120 pinning sorted by pin number

Pin Name Buffer Type Description
Page 254

Pinning for Lavender and Jasmine
77 VSC_VREF ITFHX Video Scaler Vertical Refernce

78 A_RED OTAMX Analog Red

79 DAC2_VSSA1_2 ITAVSX DAC Ground

80 VSC_D[8] ITFHX Video Scaler Data Input

81 A_VRO OTAVX DAC Full Scale Adjust

82 VREF ITAMX DAC Testpin VREF

83 VSC_D[1] ITFHX Video Scaler Data Input

84 DIS_D[4] YB3NNLMX Display Data

85 DIS_D[5] YB3NNLMX Display Data

86 DIS_D[7] YB3NNLMX Display Data

87 DIS_D[15] YB3NNLMX Display Data

88 DIS_D[10] YB3NNLMX Display Data

89 DIS_D[16] YB3NNLMX Display Data

90 DIS_D[23] YB3NNLMX Display Data

91 DIS_D[2] YB3NNLMX Display Data

92 DIS_CK YB3NNLMX Display Color Key

93 ULB_WRX[0] ITFHX ULB Interface Byte 0 Write Enable

94 ULB_D[1] BFNNQMX ULB Interface Data

95 ULB_D[12] BFNNQMX ULB Interface Data

96 ULB_D[6] BFNNQMX ULB Interface Data

97 ULB_D[3] BFNNQMX ULB Interface Data

98 VDDE[2] OVDD3X IO supply 3.3V

99 ULB_D[15] BFNNQMX ULB Interface Data

100 ULB_D[18] BFNNQMX ULB Interface Data

101 ULB_D[22] BFNNQMX ULB Interface Data

102 ULB_D[23] BFNNQMX ULB Interface Data

103 ULB_D[24] BFNNQMX ULB Interface Data

104 ULB_CS ITFHX ULB Interface Chip Select

105 ULB_D[27] BFNNQMX ULB Interface Data

106 ULB_A[0] ITFHX ULB Interface Address

107 ULB_A[5] ITFHX ULB Interface Address

108 ULB_A[13] ITFHX ULB Interface Address

109 ULB_A[12] ITFHX ULB Interface Address

Table 1-7: MB87J2120 pinning sorted by pin number

Pin Name Buffer Type Description
Pinning and Buffer Types Page 255

MB87J2120, MB87P2020-A Hardware Manual
110 ULB_A[4] ITFHX ULB Interface Address

111 VDDE[10] OVDD3X IO supply 3.3V

112 ULB_DEOP BFNNQMX ULB Interface DMA Stop Output
(DSTOP)

113 ULB_A[19] ITFHX ULB Interface Address

114 ULB_A[16] ITFHX ULB Interface Address

115 ULB_RDY OTFTQMX ULB Interface Ready

116 SDC_D[2] YB3NNLMX SDRAM Data

117 SDC_D[6] YB3NNLMX SDRAM Data

118 SDC_D[9] YB3NNLMX SDRAM Data

119 SDC_D[10] YB3NNLMX SDRAM Data

120 GND[4] OVSSX GND

121 SDC_D[17] YB3NNLMX SDRAM Data

122 SDC_D[12] YB3NNLMX SDRAM Data

123 SDC_D[18] YB3NNLMX SDRAM Data

124 SDC_D[25] YB3NNLMX SDRAM Data

125 SDC_D[31] YB3NNLMX SDRAM Data

126 SDC_D[30] YB3NNLMX SDRAM Data

127 SDC_D[24] YB3NNLMX SDRAM Data

128 SDC_D[20] YB3NNLMX SDRAM Data

129 SDC_A[11] YB3NNLMX SDRAM Address

130 SDC_A[5] YB3NNLMX SDRAM Address

131 SDC_A[2] YB3NNLMX SDRAM Address

132 VDDE[6] OVDD3X IO supply 3.3V

133 SDC_RAS YB3NNLMX SDRAM RAS

134 MODE[2] ITFUHX GDC Mode Pin (pull up)

135 VDDE[8] OVDD3X IO supply 3.3V

136 CCFL_FET1 OTFTQMX CCFL FET driver

137 CCFL_OFF OTFTQMX CCFL supply control OFF

138 AVSS[5] APLL APLL GND

139 OSC_IN YI002AEX XTAL input

140 VSC_IDENT ITFHX Video Scaler Field identification

141 VSC_D[3] ITFHX Video Scaler Data Input

Table 1-7: MB87J2120 pinning sorted by pin number

Pin Name Buffer Type Description
Page 256

Pinning for Lavender and Jasmine
142 VSC_D[11] ITFHX Video Scaler Data Input

143 VSC_D[12] ITFHX Video Scaler Data Input

144 VSC_D[4] ITFHX Video Scaler Data Input

145 Spacer, n.c.

146 DAC1_VSSA ITAVSX DAC Ground

147 VSC_D[0] ITFHX Video Scaler Data Input

148 DAC2_VDDA1 ITAVDX DAC Supply 2.5V

149 DAC3_VDDA1 ITAVDX DAC Supply 2.5V

150 DIS_PIXCLK B3NNNMX Display Pixel Clock (programmable
in/out)

151 DIS_D[0] YB3NNLMX Display Data

152 DIS_D[3] YB3NNLMX Display Data

153 DIS_D[11] YB3NNLMX Display Data

154 DIS_D[17] YB3NNLMX Display Data

155 DIS_D[12] YB3NNLMX Display Data

156 DIS_D[21] YB3NNLMX Display Data

157 DIS_VREF YB3NNLMX Display programmable sync

158 DIS_D[18] YB3NNLMX Display Data

159 ULB_D[0] BFNNQMX ULB Interface Data

160 ULB_D[16] BFNNQMX ULB Interface Data

161 ULB_D[10] BFNNQMX ULB Interface Data

162 ULB_D[2] BFNNQMX ULB Interface Data

163 ULB_D[7] BFNNQMX ULB Interface Data

164 ULB_D[13] BFNNQMX ULB Interface Data

165 ULB_D[17] BFNNQMX ULB Interface Data

166 ULB_D[19] BFNNQMX ULB Interface Data

167 ULB_D[21] BFNNQMX ULB Interface Data

168 ULB_D[28] BFNNQMX ULB Interface Data

169 ULB_A[1] ITFHX ULB Interface Address

170 ULB_D[29] BFNNQMX ULB Interface Data

171 ULB_A[3] ITFHX ULB Interface Address

172 ULB_A[11] ITFHX ULB Interface Address

173 ULB_A[14] ITFHX ULB Interface Address

Table 1-7: MB87J2120 pinning sorted by pin number

Pin Name Buffer Type Description
Pinning and Buffer Types Page 257

MB87J2120, MB87P2020-A Hardware Manual
174 ULB_A[6] ITFHX ULB Interface Address

175 ULB_A[20] ITFHX ULB Interface Address

176 ULB_DREQ OTFTQMX ULB Interface DMA Request

177 ULB_A[15] ITFHX ULB Interface Address

178 SDC_D[0] YB3NNLMX SDRAM Data

179 SDC_D[1] YB3NNLMX SDRAM Data

180 SDC_D[4] YB3NNLMX SDRAM Data

181 SDC_D[5] YB3NNLMX SDRAM Data

182 SDC_D[8] YB3NNLMX SDRAM Data

183 SDC_D[13] YB3NNLMX SDRAM Data

184 SDC_D[19] YB3NNLMX SDRAM Data

185 SDC_D[14] YB3NNLMX SDRAM Data

186 SDC_D[23] YB3NNLMX SDRAM Data

187 SDC_D[29] YB3NNLMX SDRAM Data

188 SDC_WE YB3NNLMX SDRAM Write Enable

189 SDC_D[26] YB3NNLMX SDRAM Data

190 SDC_DMQ YB3NNLMX SDRAM DQM

191 SDC_A[9] YB3NNLMX SDRAM Address

192 SDC_A[1] YB3NNLMX SDRAM Address

193 SDC_A[6] YB3NNLMX SDRAM Address

194 SDC_A[12] YB3NNLMX SDRAM Address

195 TEST YB3DNLMX Fujitsu Testpin

196 RSTX ITFUHX GDC Reset (pull up)

197 GND[8] OVSSX GND

198 VDDE[7] OVDD3X IO supply 3.3V

199 VSC_D[9] ITFHX Video Scaler Data Input

200 OSC_OUT YB002AAX XTAL output

201 VSC_D[5] ITFHX Video Scaler Data Input

202 VSC_D[13] ITFHX Video Scaler Data Input

203 VSC_D[10] ITFHX Video Scaler Data Input

204 VSC_D[2] ITFHX Video Scaler Data Input

205 GND GND GND

206 DAC1_VSSA1_2 ITAVSX DAC Supply 2.5V

Table 1-7: MB87J2120 pinning sorted by pin number

Pin Name Buffer Type Description
Page 258

Pinning for Lavender and Jasmine
207 VDDI VDDI# Core supply 2.5 V

208 DAC1_VDDA1 ITAVDX DAC Supply 2.5V

209 GND GND GND

210 VDDE VDDE#5 IO supply 3.3V

211 VDDI VDDI# Core supply 2.5 V

212 DIS_D[9] YB3NNLMX Display Data

213 VDDE VDDE# IO supply 3.3V

214 GND GND GND

215 DIS_HSYNC YB3NNLMX Display programmable sync

216 VDDE VDDE# IO supply 3.3V

217 VDDE[1] OVDD3X IO supply 3.3V

218 GND GND GND

219 GND[2] OVSSX GND

220 VDDI VDDI# Core supply 2.5 V

221 ULB_D[9] BFNNQMX ULB Interface Data

222 GND GND GND

223 VDDI VDDI# Core supply 2.5 V

224 VDDE VDDE# IO supply 3.3V

225 GND[9] OVSSX GND

226 VDDI VDDI# Core supply 2.5 V

227 GND GND GND

228 ULB_A[9] ITFHX ULB Interface Address

229 VDDE VDDE# IO supply 3.3V

230 ULB_A[8] ITFHX ULB Interface Address

231 GND GND GND

232 ULB_RDX ITFHX ULB Interface Read

233 VDDI VDDI# Core supply 2.5 V

234 VDDE[3] OVDD3X IO supply 3.3V

235 GND GND GND

236 VDDE VDDE# IO supply 3.3V

237 VDDI VDDI# Core supply 2.5 V

238 SDC_CLK B3NNNMX SDRAM Clock

239 VDDE VDDE# IO supply 3.3V

Table 1-7: MB87J2120 pinning sorted by pin number

Pin Name Buffer Type Description
Pinning and Buffer Types Page 259

MB87J2120, MB87P2020-A Hardware Manual
240 GND GND GND

241 SDC_D[27] YB3NNLMX SDRAM Data

242 VDDE VDDE# IO supply 3.3V

243 VDDE[5] OVDD3X IO supply 3.3V

244 GND GND GND

245 GND[6] OVSSX GND

246 VDDI VDDI# Core supply 2.5 V

247 SDC_A[8] YB3NNLMX SDRAM Address

248 GND GND GND

249 VDDI VDDI# Core supply 2.5 V

250 VDDE VDDE# IO supply 3.3V

251 GND[7] OVSSX GND

252 VDDI VDDI# Core supply 2.5 V

253 GND GND GND

254 VSC_D[15] ITFHX Video Scaler Data Input

255 VDDE VDDE# IO supply 3.3V

256 VSC_VACT ITFHX Video Scaler VACT

Table 1-8: MB87J2120 pinning sorted by name

Pin Name Buffer Type Description

4 Spacer, n.c.

145 Spacer, n.c.

3 A_BLUE OTAMX Analog Blue

5 A_GREEN OTAMX Analog Green

78 A_RED OTAMX Analog Red

81 A_VRO OTAVX DAC Full Scale Adjust

71 AVDD[5] APLL APLL supply 2.5V

138 AVSS[5] APLL APLL GND

136 CCFL_FET1 OTFTQMX CCFL FET driver

66 CCFL_FET2 OTFTQMX CCFL FET driver

67 CCFL_IGNIT OTFTQMX CCFL supply control IGNITION

137 CCFL_OFF OTFTQMX CCFL supply control OFF

Table 1-7: MB87J2120 pinning sorted by pin number

Pin Name Buffer Type Description
Page 260

Pinning for Lavender and Jasmine
6 DAC1_VDDA ITAVDX DAC Supply 2.5V

208 DAC1_VDDA1 ITAVDX DAC Supply 2.5V

146 DAC1_VSSA ITAVSX DAC Ground

206 DAC1_VSSA1_2 ITAVSX DAC Supply 2.5V

148 DAC2_VDDA1 ITAVDX DAC Supply 2.5V

79 DAC2_VSSA1_2 ITAVSX DAC Ground

149 DAC3_VDDA1 ITAVDX DAC Supply 2.5V

2 DAC3_VSSA1_2 ITAVSX DAC Ground

92 DIS_CK YB3NNLMX Display Color Key

151 DIS_D[0] YB3NNLMX Display Data

88 DIS_D[10] YB3NNLMX Display Data

153 DIS_D[11] YB3NNLMX Display Data

155 DIS_D[12] YB3NNLMX Display Data

12 DIS_D[13] YB3NNLMX Display Data

14 DIS_D[14] YB3NNLMX Display Data

87 DIS_D[15] YB3NNLMX Display Data

89 DIS_D[16] YB3NNLMX Display Data

154 DIS_D[17] YB3NNLMX Display Data

158 DIS_D[18] YB3NNLMX Display Data

15 DIS_D[19] YB3NNLMX Display Data

8 DIS_D[1] YB3NNLMX Display Data

19 DIS_D[20] YB3NNLMX Display Data

156 DIS_D[21] YB3NNLMX Display Data

17 DIS_D[22] YB3NNLMX Display Data

90 DIS_D[23] YB3NNLMX Display Data

91 DIS_D[2] YB3NNLMX Display Data

152 DIS_D[3] YB3NNLMX Display Data

84 DIS_D[4] YB3NNLMX Display Data

85 DIS_D[5] YB3NNLMX Display Data

9 DIS_D[6] YB3NNLMX Display Data

86 DIS_D[7] YB3NNLMX Display Data

10 DIS_D[8] YB3NNLMX Display Data

212 DIS_D[9] YB3NNLMX Display Data

Table 1-8: MB87J2120 pinning sorted by name

Pin Name Buffer Type Description
Pinning and Buffer Types Page 261

MB87J2120, MB87P2020-A Hardware Manual
215 DIS_HSYNC YB3NNLMX Display programmable sync

150 DIS_PIXCLK B3NNNMX Display Pixel Clock (programmable
in/out)

157 DIS_VREF YB3NNLMX Display programmable sync

18 DIS_VSYNC YB3NNLMX Display programmable sync

1 GND GND GND

20 GND GND GND

39 GND GND GND

58 GND GND GND

205 GND GND GND

209 GND GND GND

214 GND GND GND

218 GND GND GND

222 GND GND GND

227 GND GND GND

231 GND GND GND

235 GND GND GND

240 GND GND GND

244 GND GND GND

248 GND GND GND

253 GND GND GND

13 GND[0] OVSSX GND

49 GND[10] OVSSX GND

68 GND[11] OVSSX GND

16 GND[1] OVSSX GND

219 GND[2] OVSSX GND

41 GND[3] OVSSX GND

120 GND[4] OVSSX GND

54 GND[5] OVSSX GND

245 GND[6] OVSSX GND

251 GND[7] OVSSX GND

197 GND[8] OVSSX GND

225 GND[9] OVSSX GND

Table 1-8: MB87J2120 pinning sorted by name

Pin Name Buffer Type Description
Page 262

Pinning for Lavender and Jasmine
69 MODE[0] ITFUHX GDC Mode Pin (pull up)

70 MODE[1] ITFUHX GDC Mode Pin (pull up)

134 MODE[2] ITFUHX GDC Mode Pin (pull up)

65 MODE[3] ITFUHX GDC Mode Pin (pull up)

139 OSC_IN YI002AEX XTAL input

200 OSC_OUT YB002AAX XTAL output

196 RSTX ITFUHX GDC Reset (pull up)

64 SBP_BUS BFUNQHX SPB Interface

55 SDC_A[0] YB3NNLMX SDRAM Address

63 SDC_A[10] YB3NNLMX SDRAM Address

129 SDC_A[11] YB3NNLMX SDRAM Address

194 SDC_A[12] YB3NNLMX SDRAM Address

192 SDC_A[1] YB3NNLMX SDRAM Address

131 SDC_A[2] YB3NNLMX SDRAM Address

61 SDC_A[3] YB3NNLMX SDRAM Address

62 SDC_A[4] YB3NNLMX SDRAM Address

130 SDC_A[5] YB3NNLMX SDRAM Address

193 SDC_A[6] YB3NNLMX SDRAM Address

60 SDC_A[7] YB3NNLMX SDRAM Address

247 SDC_A[8] YB3NNLMX SDRAM Address

191 SDC_A[9] YB3NNLMX SDRAM Address

59 SDC_CAS YB3NNLMX SDRAM CAS

51 SDC_CKE YB3DNLMX SDRAM Clock Enable

238 SDC_CLK B3NNNMX SDRAM Clock

178 SDC_D[0] YB3NNLMX SDRAM Data

119 SDC_D[10] YB3NNLMX SDRAM Data

47 SDC_D[11] YB3NNLMX SDRAM Data

122 SDC_D[12] YB3NNLMX SDRAM Data

183 SDC_D[13] YB3NNLMX SDRAM Data

185 SDC_D[14] YB3NNLMX SDRAM Data

50 SDC_D[15] YB3NNLMX SDRAM Data

52 SDC_D[16] YB3NNLMX SDRAM Data

121 SDC_D[17] YB3NNLMX SDRAM Data

Table 1-8: MB87J2120 pinning sorted by name

Pin Name Buffer Type Description
Pinning and Buffer Types Page 263

MB87J2120, MB87P2020-A Hardware Manual
123 SDC_D[18] YB3NNLMX SDRAM Data

184 SDC_D[19] YB3NNLMX SDRAM Data

179 SDC_D[1] YB3NNLMX SDRAM Data

128 SDC_D[20] YB3NNLMX SDRAM Data

53 SDC_D[21] YB3NNLMX SDRAM Data

57 SDC_D[22] YB3NNLMX SDRAM Data

186 SDC_D[23] YB3NNLMX SDRAM Data

127 SDC_D[24] YB3NNLMX SDRAM Data

124 SDC_D[25] YB3NNLMX SDRAM Data

189 SDC_D[26] YB3NNLMX SDRAM Data

241 SDC_D[27] YB3NNLMX SDRAM Data

56 SDC_D[28] YB3NNLMX SDRAM Data

187 SDC_D[29] YB3NNLMX SDRAM Data

116 SDC_D[2] YB3NNLMX SDRAM Data

126 SDC_D[30] YB3NNLMX SDRAM Data

125 SDC_D[31] YB3NNLMX SDRAM Data

45 SDC_D[3] YB3NNLMX SDRAM Data

180 SDC_D[4] YB3NNLMX SDRAM Data

181 SDC_D[5] YB3NNLMX SDRAM Data

117 SDC_D[6] YB3NNLMX SDRAM Data

46 SDC_D[7] YB3NNLMX SDRAM Data

182 SDC_D[8] YB3NNLMX SDRAM Data

118 SDC_D[9] YB3NNLMX SDRAM Data

190 SDC_DMQ YB3NNLMX SDRAM DQM

133 SDC_RAS YB3NNLMX SDRAM RAS

188 SDC_WE YB3NNLMX SDRAM Write Enable

195 TEST YB3DNLMX Fujitsu Testpin

106 ULB_A[0] ITFHX ULB Interface Address

37 ULB_A[10] ITFHX ULB Interface Address

172 ULB_A[11] ITFHX ULB Interface Address

109 ULB_A[12] ITFHX ULB Interface Address

108 ULB_A[13] ITFHX ULB Interface Address

173 ULB_A[14] ITFHX ULB Interface Address

Table 1-8: MB87J2120 pinning sorted by name

Pin Name Buffer Type Description
Page 264

Pinning for Lavender and Jasmine
177 ULB_A[15] ITFHX ULB Interface Address

114 ULB_A[16] ITFHX ULB Interface Address

42 ULB_A[17] ITFHX ULB Interface Address

43 ULB_A[18] ITFHX ULB Interface Address

113 ULB_A[19] ITFHX ULB Interface Address

169 ULB_A[1] ITFHX ULB Interface Address

175 ULB_A[20] ITFHX ULB Interface Address

38 ULB_A[2] ITFHX ULB Interface Address

171 ULB_A[3] ITFHX ULB Interface Address

110 ULB_A[4] ITFHX ULB Interface Address

107 ULB_A[5] ITFHX ULB Interface Address

174 ULB_A[6] ITFHX ULB Interface Address

35 ULB_A[7] ITFHX ULB Interface Address

230 ULB_A[8] ITFHX ULB Interface Address

228 ULB_A[9] ITFHX ULB Interface Address

34 ULB_CLK ITFHX ULB Interface Clock

104 ULB_CS ITFHX ULB Interface Chip Select

159 ULB_D[0] BFNNQMX ULB Interface Data

161 ULB_D[10] BFNNQMX ULB Interface Data

25 ULB_D[11] BFNNQMX ULB Interface Data

95 ULB_D[12] BFNNQMX ULB Interface Data

164 ULB_D[13] BFNNQMX ULB Interface Data

21 ULB_D[14] BFNNQMX ULB Interface Data

99 ULB_D[15] BFNNQMX ULB Interface Data

160 ULB_D[16] BFNNQMX ULB Interface Data

165 ULB_D[17] BFNNQMX ULB Interface Data

100 ULB_D[18] BFNNQMX ULB Interface Data

166 ULB_D[19] BFNNQMX ULB Interface Data

94 ULB_D[1] BFNNQMX ULB Interface Data

27 ULB_D[20] BFNNQMX ULB Interface Data

167 ULB_D[21] BFNNQMX ULB Interface Data

101 ULB_D[22] BFNNQMX ULB Interface Data

102 ULB_D[23] BFNNQMX ULB Interface Data

Table 1-8: MB87J2120 pinning sorted by name

Pin Name Buffer Type Description
Pinning and Buffer Types Page 265

MB87J2120, MB87P2020-A Hardware Manual
103 ULB_D[24] BFNNQMX ULB Interface Data

32 ULB_D[25] BFNNQMX ULB Interface Data

30 ULB_D[26] BFNNQMX ULB Interface Data

105 ULB_D[27] BFNNQMX ULB Interface Data

168 ULB_D[28] BFNNQMX ULB Interface Data

170 ULB_D[29] BFNNQMX ULB Interface Data

162 ULB_D[2] BFNNQMX ULB Interface Data

31 ULB_D[30] BFNNQMX ULB Interface Data

33 ULB_D[31] BFNNQMX ULB Interface Data

97 ULB_D[3] BFNNQMX ULB Interface Data

23 ULB_D[4] BFNNQMX ULB Interface Data

24 ULB_D[5] BFNNQMX ULB Interface Data

96 ULB_D[6] BFNNQMX ULB Interface Data

163 ULB_D[7] BFNNQMX ULB Interface Data

22 ULB_D[8] BFNNQMX ULB Interface Data

221 ULB_D[9] BFNNQMX ULB Interface Data

44 ULB_DACK ITFHX ULB Interface DMA Acknowledge

112 ULB_DEOP BFNNQMX ULB Interface DMA Stop Output
(DSTOP)

176 ULB_DREQ OTFTQMX ULB Interface DMA Request

40 ULB_INTRQ OTFTQMX ULB Interface Interrupt Output

232 ULB_RDX ITFHX ULB Interface Read

115 ULB_RDY OTFTQMX ULB Interface Ready

93 ULB_WRX[0] ITFHX ULB Interface Byte 0 Write Enable

29 ULB_WRX[1] ITFHX ULB Interface Byte 1 Write Enable

28 ULB_WRX[2] ITFHX ULB Interface Byte 2 Write Enable

36 ULB_WRX[3] ITFHX ULB Interface Byte 3 Write Enable

210 VDDE VDDE#5 IO supply 3.3V

213 VDDE VDDE# IO supply 3.3V

216 VDDE VDDE# IO supply 3.3V

224 VDDE VDDE# IO supply 3.3V

229 VDDE VDDE# IO supply 3.3V

236 VDDE VDDE# IO supply 3.3V

Table 1-8: MB87J2120 pinning sorted by name

Pin Name Buffer Type Description
Page 266

Pinning for Lavender and Jasmine
239 VDDE VDDE# IO supply 3.3V

242 VDDE VDDE# IO supply 3.3V

250 VDDE VDDE# IO supply 3.3V

255 VDDE VDDE# IO supply 3.3V

11 VDDE[0] OVDD3X IO supply 3.3V

111 VDDE[10] OVDD3X IO supply 3.3V

217 VDDE[1] OVDD3X IO supply 3.3V

98 VDDE[2] OVDD3X IO supply 3.3V

234 VDDE[3] OVDD3X IO supply 3.3V

48 VDDE[4] OVDD3X IO supply 3.3V

243 VDDE[5] OVDD3X IO supply 3.3V

132 VDDE[6] OVDD3X IO supply 3.3V

198 VDDE[7] OVDD3X IO supply 3.3V

135 VDDE[8] OVDD3X IO supply 3.3V

26 VDDE[9] OVDD3X IO supply 3.3V

207 VDDI VDDI# Core supply 2.5 V

211 VDDI VDDI# Core supply 2.5 V

220 VDDI VDDI# Core supply 2.5 V

223 VDDI VDDI# Core supply 2.5 V

226 VDDI VDDI# Core supply 2.5 V

233 VDDI VDDI# Core supply 2.5 V

237 VDDI VDDI# Core supply 2.5 V

246 VDDI VDDI# Core supply 2.5 V

249 VDDI VDDI# Core supply 2.5 V

252 VDDI VDDI# Core supply 2.5 V

7 VPD VPDX Fujitsu Tester Pin

82 VREF ITAMX DAC Testpin VREF

73 VSC_ALPHA ITFHX Video Scaler ALPHA

74 VSC_CLKV ITFHX Video Scaler Clock

147 VSC_D[0] ITFHX Video Scaler Data Input

203 VSC_D[10] ITFHX Video Scaler Data Input

142 VSC_D[11] ITFHX Video Scaler Data Input

143 VSC_D[12] ITFHX Video Scaler Data Input

Table 1-8: MB87J2120 pinning sorted by name

Pin Name Buffer Type Description
Pinning and Buffer Types Page 267

MB87J2120, MB87P2020-A Hardware Manual
1.3.2 Buffer Types

Table 1-9 shows all used buffers for MB87J2120.

202 VSC_D[13] ITFHX Video Scaler Data Input

75 VSC_D[14] ITFHX Video Scaler Data Input

254 VSC_D[15] ITFHX Video Scaler Data Input

83 VSC_D[1] ITFHX Video Scaler Data Input

204 VSC_D[2] ITFHX Video Scaler Data Input

141 VSC_D[3] ITFHX Video Scaler Data Input

144 VSC_D[4] ITFHX Video Scaler Data Input

201 VSC_D[5] ITFHX Video Scaler Data Input

76 VSC_D[6] ITFHX Video Scaler Data Input

72 VSC_D[7] ITFHX Video Scaler Data Input

80 VSC_D[8] ITFHX Video Scaler Data Input

199 VSC_D[9] ITFHX Video Scaler Data Input

140 VSC_IDENT ITFHX Video Scaler Field identification

256 VSC_VACT ITFHX Video Scaler VACT

77 VSC_VREF ITFHX Video Scaler Vertical Refernce

Table 1-9: Buffer types for MB87J2120

Buffer type Description

B3NNLMX Bidirectional True buffer (3.3V CMOS, IOL=4mA,Low Noise type)

B3NNNMX Bidirectional True buffer (3.3V CMOS, IOL=4mA)

BFNNQMX 5V tolerant, bidirectional true buffer 3.3V CMOS, IOL/IOH=4mA

BFUNQHX Bidirectional True buffer (5V Tolerant, 25K Pull-up, IOL=8mA, High speed
type)

ITAMX Analog Input buffer

ITAVDX Analog Power Supply

ITAVSX Analog GND

ITFHX 5V tolerant 3.3V CMOS Input

ITFUHX 5V tolerant 3.3V CMOS Input, 25 k Pull-up

OTAMX Analog Output

OTAVX Analog Output

Table 1-8: MB87J2120 pinning sorted by name

Pin Name Buffer Type Description
Page 268

Pinning for Lavender and Jasmine
OTFTQMX 5 V tolerant 3.3V tri-state output, IOL/IOH=4mA

OVDD3X Power Supply for 3.3V VDD

OVSSX Power Supply for VSS

VPDX 3.3V CMOS input, disable input for Pull up/down resistors, connect to GND

YB002AAX Oscillator Output

YB3DNLMX Bidirectional True buffer (3.3V CMOS, 25K Pull-down, IOL=4mA,Low Noise
type)

YB3NNLMX Bidirectional True buffer (3.3V CMOS, IOL=4mA,Low Noise type)

YI002AEX Oscillator Pin Input

Table 1-9: Buffer types for MB87J2120

Buffer type Description
Pinning and Buffer Types Page 269

MB87J2120, MB87P2020-A Hardware Manual

as the

hich

specific

ply

o the
2 Electrical Specification

2.1 Maximum Ratings

The maximum ratings are the limit values that must never be exceeded even for an instant. As long
device is used within the maximum ratings specified range, it will never be damaged.

The Cx71 series of CMOS ASICs has five types of output buffers for driving current values, each of w

has a different maximum output current rating.

2.1.1 Power-on sequence

Lavender and Jasmine are dual power supply devices. For power ON/OFF sequence, there is no
restriction, but the following sequences are recommended:

Power-ON:VDDI (internal, 2.5V)-> VDDE (external, 3.3V)-> Signal

Power-OFF:Signal-> VDDE (external, 3.3V)-> VDDI (internal, 2.5V)

It is restricted that VDDE only is supplied continuously for more than 1 minute while VDDI/DRAM sup
is off. If the time exceeds 1 minute, it may affect the reliability of the internal transistors.

When VDDE is changed from off to on, the internal state of the circuit may not be maintained due t
noise by power supply. Therefore, the circuit should be initialized after power is on.

Table 2-1: Maximum Ratings

Parameter Symbol Requirements Unit

Supply voltage VDDI
VDDE

SDRAM_VCC
APLL_AVDD
DAC_VDDA

-0.5 to +3.0
-0.5 to +4.0
VDDI
VDDI
-0.5 to +3.0

V

Input voltage VI -0.5 to VDD + 0.5 (<= 4.0V)a

-0.5 to VDDE + 4.0 (<= 6.0V)b

a.for 3.3V interface
b.for 5.0V tolerant

V

Output voltage VO -0.5 to VDD +0.5 (<= 4.0V)a

-0.5 to VDDE + 4.0b <L/H- State>

-0.5 to VDDE + 4.0 (<= 6.0V)b <Z- State>

V

Storage temperature TST -55 to +125 ˚C

Junction temperature Tj -40 to +125

Ambient temperature Ta -40 to +85

Output currentc

c.The maximum output current which always flows in the circuit.

IO +/-13 mA

Supply pin current
for one VDD/GND pin

ID 60 mA
Page 270

Electrical Specififcation

. If a
ly,

upply
r off.

t will

take
2.1.2 External Signal Levels

External signal levels must not be higher than power supply voltage by 0.5V or more (3.3V inputs)
signal with 0.5V or more than VDDE is given to an input buffer the current will flow internally to supp
which can give a permanent damage to the LSI.

In addition, when power supply becomes on or off, signal levels must not be higher than the power s
voltage by 0.5V or more. This means that signals must not be applied before power on / after powe

If an external signal (5V) is input at a 5V tolerant input before the device in question is powered-on, i
give the LSI a permanent damage.

2.1.3 APLL Power Supply Level

APLL (Analog PLL) power supply level must not be higher than power supply voltage VDDI. Please
care of APLL power supply not to be over VDDI level at Power ON/OFF sequence.

2.1.4 DAC supply

DAC supply is isolated from other 2.5V supply.

2.1.5 SDRAM Supply

SDRAM supply must be as same level as VDDI (Jasmine only).
Electrical Specification Page 271

MB87J2120, MB87P2020-A Hardware Manual

ration.

ristics

hin the
2.2 Recommended Operating Conditions

The recommended operating conditions are the recommended values for assuring normal logic ope

As long as the device is used within the recommended operating conditions, the electrical characte
described below are assured.

2.3 DC Characteristics

The DC characteristics assure the worst values of the static characteristics of input/output buffers wit
range specified at the recommended operating conditions.

Table 2-2: Operating conditions

Parameter Symbol Requirements Unit

Min Typ Max

Supply voltage VDDE 3.0 3.3 3.6 V

VDDI 2.3 2.5 2.7

DAC_VDDA 2.3 2.5 2.7

High-level input
voltage

3.3V VIH 2.0 - VDDE+ 0.3 V

5V Tolerant 2.0 - 5.5

Low-level input
voltage

3.3V VIL -0.3 - 0.8 V

5V Tolerant -0.3 - 0.8

Junction temperature Tj -40 - 125 ˚C

Ambient temperature Ta -40 - 85 ˚C

Table 2-3: DC characteristics

Parameter Symbol Test conditions Requirements Unit

Min Typ Max

Supply cur-

renta b
IDDS ASIC master

type T7
- - 0.2 mA

High-level out-
put voltage

VOH IOH= -100uA VDDE-0.2 - VDDE V

Low-level out-
put voltage

VOL IOL= 100uA 0 - 0.2 V

High-level out-
put current

IOH L type
VOH=VDDE- 0.4V

-2 - - mA

M type
VOH=VDDE- 0.4V

-4 - - mA

H type
VOH=VDDE- 0.4V

-8 - - mA
Page 272

Electrical Specififcation

. Core
ied that
Following table shows current/power consumption for Jasmine under special operating conditions
clock, which has most influence is varied over specified range. Please note, if other parameters var
given values can be exceeded.

Measurement conditions:

• Oscillator 12.0 MHz

• Video clock 13.5 MHz, Pixel Clock (display) 6.0 MHz, ULB_CLK 16 MHz

• VDDI = 2.7V, VDDE = 3.6V

Low-level out-
put current

IOL L type VOL=0.4V 2.0 - - mA

M type VOL=0.4V 4.0 - - mA

H type VOL=0.4V 8.0 - - mA

Input leakage

current per pinb
IL - - +/-5 uA

Input pull-up/
pull-down

resistorc

RP 10 25 70 kOhm

Output short-

circuit currentd
IOS L type - - +/-40 mA

M type - - +/-60 mA

H type - - +/-120 mA

a.VIH = VDD and VIL = VSS, memory is in stand-by mode, Analog cells (APLL, DACs, DAC-
VREF) are at power down mode, Tj = 25˚C
b.Input pins have to be static. If an input buffer with pull-up/pull-down resistor is used, the input
leakage current may exceed the above value
c.Either a buffer without a resistor or with a pull-up/pull-down resistor can be selected from the
input and bidirectional buffers.
d.Maximum supply current at the short circuit of output and VDD or VSS. For 1 second per pin.

Table 2-4: Maximum core current consumption for Jasmine

Frequency
[MHz]

APLL Divider/Mul-

tiplier Setupa

a.Values interpreted with n+1

Core/Analog
supply [mA]

DRAM supply
[mA]

Power consump-
tion [mW]

16 5 / 7 84.1 9.2 (3.8)b

b.Values for DRAM supply in parenthesis are measured while running an usual application.

360 (346)

20 5 / 9 104.4 11.5 (4.8) 421 (403)

36 6 / 20 180.7 20.7 (9.1) 652 (621)

48 5 / 23 232.4 27.6 (10.6) 811 (765)

64 2 / 15 294.0 36.8 (12.6) 1001 (936)

Table 2-3: DC characteristics

Parameter Symbol Test conditions Requirements Unit

Min Typ Max
Electrical Specification Page 273

MB87J2120, MB87P2020-A Hardware Manual

con-
• I/O current assumed 30 mA, this varies in given environments/applications. Part of I/O power
sumtion was 30mA * 3.6V = 108mW (fixed within this mesurement environment).

2.4 Mounting / Soldering

Mounting and soldering is explained in Fujitsu package data book, chapter 2.
Page 274

AC Characteristics

eady

nd

ter.

listed

cified
s and

itance
of its

. The
ted to

tions
when

con-
2.5 AC Characteristics

2.5.1 Measurement Conditions

For the determination of GDC timing values three independent conditions are used:

4. External capacities: 20pF and50pF.
Internal capacitance of the pin itself is included in this measurement condition (20/50pF alr
including 5...7pF pin capacitance) and has to be subtracted from external capacitive load.

5. Operating conditions: maximum conditions (min. voltage/max. temperature/slowest process) a
minimum conditions (max. voltage/min. temperature/fastest process).
The allowed values for voltage and temperature are described in the operating condition chap

6. Timing path: longest andshortest (internal) path to/from a given output/input pin.

For every timing type for input and output signals always the worst case for the environment circuits is
in this specification. Table 2-5 shows the used conditions for all signal types in this specification.

Input setup and hold timings are minimum requirements from the application point of view, thus spe
in the “Min” column. However the input parameters are evaluated at maximum operating condition
longest timing path (see table 2-5).

For tri-state outputs the timing is evaluated for the 0 -> Z and 1 -> Z transitions without any load capac
dependency. Measurement points are defined if current through the output pin becomes below 5%
nominal value. The voltage level at the output pin is not of interest when switching into high-Z state
timing of voltage level in high-Z state depends only on the external RC combination and is not rela
this AC specification.

2.5.2 Definitions

Figure 2-1 shows the definition of setup and hold relations for inputs (DIN1...3) and hold and delay rela
for outputs (DOUT1...2) regarding the interface clock pin. DIN2, DIN3 and DOUT2 are special cases
negative setup or hold timings are given.

Table 2-5 shows the kind of timing values defined in this specification, its symbols and the evaluation
ditions used to determine a specific value according to chapter 2.5.1.

D2

D1 D2

D1

������������������
������������������
������������������
������������������

t

�����������������
�����������������
�����������������
�����������������

tS H

DIN1

H

������������
������������
������������
������������

−tS

DIN3
�����������������������
�����������������������
�����������������������
�����������������������

−tH

DIN2

�������������
�������������
�������������
�������������

t

������
������
������
������

����
����
����
����

t
t

OD

OH

S

DOUT1

������������
������������
������������
������������

��������
��������
��������
��������

t

����
����
����
����

−tOH tOD

�������
�������
�������
�������

��
��
��
��

DOUT2

CLK

Figure 2-1: Input and Output Timing Relations
Page 275

MB87J2120, MB87P2020-A Hardware Manual

t

direct

r

For a given pin the symbol name is expanded by the pin name (e.g. tOD<Pin>). Sometimes also a shortcu
for the pinname is used but the timing value has a unique name.

2.5.3 Clock inputs

OSC_IN, OSC_OUT are dedicated ports for crystal oscillator connection. When OSC_IN is used as
clock input, the specification applies as stated for the other possible clock inputs.

ULB_CLK, RCLK, VSC_CLKV, DIS_PIXCLK give the ability to feed in an external clock directly. Fo
usage of different clock inputs see Clock Unit specification.

• DIS_PIXCLK can be configured as input or output

• Transition Time tT max. 2ns

• VIH = 2.0V, VIL = 0.8V (3.3V CMOS Interface Input)

Table 2-5: Symbolic names and evaluation conditions

Timing Symbol Conditions as described in chapter 2.5.1

Input setup time tS 1: independent from external capacity
2: max conditions
3: longest path

Input hold time tH 1: independent from external capacity
2: max conditions
3: longest path

Output delay time tOD 1: separate value for 20pF and 50pF
2: max conditions
3: longest path

Output hold time tOH 1: separate value for 20pF and 50pF
2: min. conditions
3: shortest path

Table 2-6: Timing Specification

Clock Parameter Symbol Min Max

ULB_CLK
(routed to CLKM,
MCU interface)

ULB Clock Cycle Time tCYU 15.625 ns -

ULB Clock High Pulse Width tPHU 7 ns -

ULB Clock Low Pulse Width tPLU 7 ns -

Tt Tt

80%

20%

50%

t

t

tPH PL

CY

0V

3.3V

Figure 2-2: AC characteristics measurement conditions
Page 276

AC Characteristics
RCLK
(routed to CLKK,
core clock without
APLL)

RSV Clock Cycle Time tCYR 15.625 ns -

RSV Clock High Pulse Width tPHR 7 ns -

RSV Clock Low Pulse Width tPLR 7 ns -

VSC_CLKV
(video interface
clock)

Video Clock Cycle Time tCYV 18.50 ns -

Video Clock High Pulse Width tPHV 9.25 ns -

Video Clock Low Pulse Width tPLV 9.25 ns -

DIS_PIXCLK
(routed to CLKD
as external display
clock)

Display Clock Cycle Time tCYD 18.50 ns -

Display Clock High Pulse Width tPHD 9.25 ns -

Display Clock Low Pulse Width tPLD 9.25 ns -

Table 2-6: Timing Specification

Clock Parameter Symbol Min Max
Page 277

MB87J2120, MB87P2020-A Hardware Manual
2.5.4 MCU User Logic Bus Interface

Table 2-7: ULB Input Signal Timing Specification

Parameter Symbol Min [ps] Max [ps]

Jas Lav Jas Lav

Chip Select (ULB_CS) Setup Time (falling) tSCSF 1450 410 -

Chip Select (ULB_CS) Hold Time (falling) tHCSF -130 2380 -

Chip Select (ULB_CS) Hold Time (rising)a tHCSR* 1800 3120 -

ULB_CS

ULB_CLK

ULB_RDX

ULB_A

ULB_D

ULB_WRX[n]

��������
��������
��������
��������

���
���
���
���

���
���
���
���

������������
������������
������������
������������

��������
��������
��������
��������

���
���
���
���

�������
�������
�������
�������

tSWRX

tHDI

SWRXt HWRXttHWRX

HAtSAt

tSDI

DI

tHCSF tSCSF

tHCSR*

t HWRX

tHCSF

Figure 2-3: ULB write access (followed by another write)

��
��
��

��
��
��

��
��
��

��
��
��

��������������������������������

���������������
���������������
���������������
���������������

��
��
��

��
��
��

�� ����������

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
���������

������������������
������������������
������������������

������������������
������������������
������������������

�
�
�
�

�
�
�
�

�������
�������
�������
�������

�
�
�
�

�
�
�
�

�
�
�
�

ULB_CS

ULB_CLK

ULB_RDX

ULB_A

ULB_WRX[n]

SRDXt t

tHCSF tSCSF

tHCSR
HCSRt

HCSFt tSCSF

tSRDXACCtHRDX tEXR tHRDX

* *

SAt

ULB_D

ULB_RDY

t OHRDY

t

OHRDYt

ODDt

DO

tODRDY ODRDYt

t

rising edge
first RDX or CS

HAt

t OHDRDX

OHDRDX

ODDRDX

Figure 2-4: ULB read access
Page 278

AC Characteristics
Read (ULB_RDX) Setup Time tSRDX 980 5020 -

Read (ULB_RDX) Hold Time tHRDX 1890 2620 -

Write (ULB_WRX) Setup Time tSWRX 5820 7890 -

Write (ULB_WRX) Hold Time tHWRX 1700 3850 -

Address (ULB_A) Setup Timeb tSA 2600 2410 -

Address (ULB_A) Hold Time tHA 1910 3610 -

Input Data (ULB_D) Setup Time tSDI 5200 1070 -

Input Data (ULB_D) Hold Time tHDI 2130 3750 -

Access Time tACC 1 TULB_CLK variablec

External Reaction Time on ULB_RDY tEXR 0 TULB_CLK -

a. More restrictive specification to rising edge of CLK_ULB is only needed if SPB will be used.

b. Address setup timing related to falling edge.

c. Access time varies with whole number of ULB_CLK periods for different register addresses. Required tim-
ing is controlled with ULB_RDY handshake.

Table 2-8: ULB Timing Specification, Output Characteristics

Parameter Symbol @20pF [ps] @50pF [ps]

Jas Lav Jas Lav

max. Ready (ULB_RDY) Output Delay Time tODRDY 13960 13070 15690 15110

min. Ready (ULB_RDY) Output Hold Time tOHRDY 4550 4560 4660 5190

max. Output Data (ULB_D) Delay Time
(regard. CLK)

tODD 17980 21160 20060 23230

min. Output Data (ULB_D) Hold Time
(regard. CLK)

tOHD 2640 3980 2640 4120

max. Output Data (ULB_D) Delay Time
(regard. RDX)

tODDRDX 12010 16490 14120 18560

min. Output Data (ULB_D) Hold Time
(regard. RDX)

tOHDRDX 2450 3560 3120 3750

Table 2-7: ULB Input Signal Timing Specification

Parameter Symbol Min [ps] Max [ps]

Jas Lav Jas Lav
Page 279

MB87J2120, MB87P2020-A Hardware Manual

ULB)
l.
2.5.5 Interrupt

For a functional description of GDC interrupt controller and supported settings see User Logic Bus (
controller description. This specification describes only the physical timing of interrupt request signa

Table 2-9: INTRQ Timing Specification

Parameter Symbol Min [ps] Max [ps]

Jas Lav Jas Lav

Interrupt (ULB_INTRQ) Pulse Width tPWI 2T / INTREQa

a. Setup value in periods of ULB_CLK, for edge sensitive mode only. In Level sensitive mode minimum 2
cycles.

-

Table 2-10: INTRQ Timing Specification, Output Characteristics

Parameter Symbol @20pF [ps] @50pF [ps]

Jas Lav Jas Lav

max. Interrupt (ULB_INTRQ) output delay
time

tODI 12360 12870 14400 14900

min. Interrupt (ULB_INTRQ) output hold
time

tOHI 4020 4420 4360 4640

��
��
��
��

��
��
��
��

ULB_CLK

ULB_INTRQ
L

t tOHI OHI

ODIt ODIt

PWIt

H/Z

Figure 2-5: Interrupt output timing
Page 280

AC Characteristics

con-
2.5.6 DMA Control Ports

For a functional description of GDC DMA controller and supported settings see User Logic Bus (ULB)
troller description. This specification describes only the physical timing of DMA control signals.

Table 2-11: DMA Timing Specification

Parameter Symbol Min [ps] Max [ps]

Jas Lav Jas Lav

DMA acknowledge (ULB_DACK) Setup
Time (rising)

tSDACK -80 50 -

DMA acknowledge (ULB_DACK) Hold

Time (rising)a

a. Jasmine has ULB_DACK timing requirement for rising clock edge only.

tHDACK 1600 - -

DMA acknowledge (ULB_DACK) Hold

Time (falling)b

b. Lavender has ULB_DACK timing requirement to both edge types. DACK 1-> 0 transition only allowed
between falling and rising clock edge.

tHDACK - 3130 -

DMA request (ULB_DREQ) Reaction Time tRDREQ 1T / 3Tc

c. ULB_DREQ reaction time on ULB_DACK. 1 cycle in block/step/burst mode. Minimum 3 cycles in demand
mode.

-

Table 2-12: DMA Timing Specification, Output Characteristics

Parameter Symbol @20pF [ps] @50pF [ps]

Jas Lav Jas Lav

max. DMA request (ULB_DREQ) Output
Delay Time

tODDREQ 14140 15480 16170 17530

min. DMA request (ULB_DREQ) Output
Hold Time

tOHDREQ 4200 4460 4600 4690

��
��
��
��

��
��
��
��

��
��
��
��

�������������
�������������
�������������
�������������

������������������
������������������
������������������
������������������

���
���
���
���

ULB_DREQ

ULB_CS

ULB_CLK

ULB_A

ULB_RDX/WRX

ULB_DACK

tt

tHASAt

t t

tOHDREQt
ODDREQt

OHDREQ

ODDREQRDREQ

SDACKt
t HDACK (Jas)

t HDACK (Lav)

tHCSF tSCSF t HCSF

HWRX/RDX HWRX/RDXt SWRX/RDX SWRX/RDXt

Figure 2-6: DMA block/burst access
Page 281

MB87J2120, MB87P2020-A Hardware Manual

play
al tim-

es.

The

ption
.

2.5.7 Display Interface

For display settings, supported colour formats, functional timing and configuration possibilities of dis
interface see Graphic Processing Unit (GPU) description. This specification describes only the physic
ing of display signals.

Pixel clock output pin (DIS_PIXCLK) has a clock invert option.Thus timings are valid for both clock edg

The timing values given in table 2-14 and 2-15 are related to Display clock output pin (DIS_PIXCLK).
values are only valid if the capacitive load is the same for clock and data pins.

Because the driving clock edge for display clock (DIS_PIXCLK) is programmable (see GPU descri
for more details) all possible edge combinations have to be taken into account for timing calculation

Table 2-13: Pixel Clock Output Timing

Parameter Symbol @20pF [ps] @50pF [ps]

Jas Lav Jas Lav

max. Pixel Clock (DIS_PIXCLK) Output

Delay (r/f)a

a. Related to internal PIXEL_CLK

tODPIXCLK 15740 11240 17900 13410

min. Pixel Clock (DIS_PIXCLK) Output
Hold

tOHPIXCLK 5240 3610 6090 4460

Table 2-14: Digital Display Interface, Output Characteristics

Parameter Symbol @20pF [ps] @50pF [ps]

Jas Lav Jas Lav

max. Display Data (DIS_D) Output Delay
Time (r/f)

tODDISD 3510 4540 4020 4930

min. Display Data (DIS_D) Output Hold
Time (r/f)

tOHDISD -690 -820 -430 -600

max. Color Key (DIS_CKEY/DIS_CK) Out-
put Delay (r/f)

tODCKEY 1960 2880 2450 3320

min. Color Key (DIS_CKEY/DIS_CK) Out-
put Hold (r/f)

tOHCKEY -800 200 -530 300

max. DIS_VSYNC Output Delay (r/f) tODVSYNC 2800 3770 3220 4200

min. DIS_VSYNC Output Hold (r/f) tOHVSYNC -4770 -1610 -6930 -3780

max. DIS_HSYNC Output Delay (r/f) tODHSYNC 2420 3720 2840 4140

min. DIS_HSYNC Output Hold (r/f) tOHHSYNC -5050 -1720 -7210 -3890

max. DIS_VREF Output Delay (r/f) tODVREF 2560 3710 2980 4140

min. DIS_VREF Output Hold (r/f) tOHVREF -4920 -1720 -7080 -3890
Page 282

AC Characteristics

odes
g of

s for
2.5.8 Video Input

For a functional timing description of video input signals and for a description of supported video m
see Video Interface Controller (VIC) description. This specification describes only the physical timin
video input signals.

2.5.9 CCFL FET Driver

For pulse shape and functional timing of CCFL FET driver see CCFL Description. This information i
capacitance influence on operating conditions and skew estimation only.

Table 2-15: Analog Display Interface, Output Characteristics

Parameter Symbol @20pF [ps] @50pF [ps]

Jas Lav Jas Lav

max. Disp. Analog Output Delay Time (r)a tODDISA 14200 14430 13350 13580

min. Display Analog Output Hold Time tOHDISA 8410 9080 6250 6910

a. Related to DIS_PIXCLK output pin. The capacitive influence on the pixel clock output is greater than the
influence on the analog outputs. Due to subtracted clock delay the relative delay values are smaller in the
50pF column.

Table 2-16: Video Input Timing

Parameter Symbol Min [ps] Max [ps]

Jas Lav Jas Lav

Video Data (VSC_D) Setup Time tSVID -360 -1660 -

Video Data (VSC_D) Hold Time tHVID 2360 2800 -

VSC_VREF Setup Time tSVIVREF -1940 -1580 -

VSC_VREF Hold Time tHVIVREF 2660 2450 -

VSC_VACT Setup tSVIVACT -2100 -1610 -

VSC_VACT Hold tHVIVACT 2820 2510 -

VSC_ALPHA Setup tSVIALPHA -2100 -1590 -

VSC_ALPHA Hold tHVIALPHA 2840 2540 -

VSC_IDENT Setup tSVIIDENTI -2100 -1620 -

VSC_IDENT Hold tHVIIDENTI 2850 2540 -

Table 2-17: CCFL Driver Outputs, Output Characteristics

Parameter Symbol @20pF [ps] @50pF [ps]

Jas Lav Jas Lav

max. CCFL_FET1 Output Delay Timea tODCCFET1 8460 5310 10490 7340

min. CCFL_FET1 Output Hold Time tOHCCFET1 3040 1830 3670 2460

max. CCFL_FET2 Output Delay Time tODCCFET2 8370 5270 10420 7290
Page 283

MB87J2120, MB87P2020-A Hardware Manual

ot of

idth

rom
tion of

face
r clock
n to the
2.5.10 Serial Peripheral Bus

For pulse shape and functional timing see SPB documentation. SPB timing regarding ULB_CLK is n
interest. It is given for completeness only.

2.5.11 Special and Mode Pins

Mode[3:0], RDY_TRIEN, VPD, TEST are static configuration and test pins.

RESETX is asynchronous, thus no timing relation to any CLK can be specified. Maximum low pulse w
suppressed by spike filter is 5.5 ns. Only Jasmine has a spike filter implemented.

2.5.12 SDRAM Ports (Lavender)

See SDC documentation for description of external SDRAM interface timing configuration. Different f
measurement conditions above, SDRAM interface timing is evaluated from load capacitance connec
CL = 10pF for MIN conditions and CL = 30pF for MAX conditions.

SDRAM clock output delay regarding internal core clock is shown in table 2-20. Other SDRAM inter
signals are specified regarding the SDC_CLK clock output pin. Same capacitive load is assumed fo
and address/command/data pins. If different load capacitance is connected to the SDC_CLK pin tha

min. CCFL_FET2 Output Hold Time tOHCCFET2 3020 1830 3640 2450

max. CCFL_OFF Output Delay Time tODCCOFF 8130 4730 10160 6760

min. CCFL_OFF Output Hold Time tOHCCOFF 2920 1730 3540 2350

max. CCFL_IGNIT Output Delay Time tODCCIGNIT 8200 4740 10250 6770

min. CCFL_IGNIT Output Hold Time tOHCCIGNIT 2940 1710 3570 2330

a. For Jasmine related to internal MASTER_CLK, rising edge; for Lavender only the path delay was used.

Table 2-18: SPB Pin Timing

Parameter Symbol Min [ps] Max [ps]

Jas Lav Jas Lav

SPB_BUS Input Setup Time (falling) tSSPB -1530 -3780 -

SPB_BUS Input Hold Time tHSPB 3100 4870 -

Table 2-19: SPB Pin Timing, Output Characteristics

Parameter Symbol @20pF [ps] @50pF [ps]

Jas Lav Jas Lav

max. SPB_BUS Output Delay Time tODSPB 11470 14890 12500 14890

min. SPB_BUS Output Hold Time tOHSPB 2990 4670 3010 5110

Table 2-17: CCFL Driver Outputs, Output Characteristics

Parameter Symbol @20pF [ps] @50pF [ps]

Jas Lav Jas Lav
Page 284

AC Characteristics

ns to

con-

d data

t con-

to be

ck.

/hold
AX

istics

pin

s are ca-
other SDRAM interface pins timing is not guaranteed to follow this specification. Thus all connectio
the SDRAM should have same wire length.

Due to configurable SDRAM interface timing, setup value of SDIF register should be considered. The
figuration register has two bits for each signal group:

• SDIF_TAO for address, control (ras/cas/we), CKE and DQM output delays

• SDIF_TDO for data output delay

• SDIF_TDI for data input sampling delay and

• SDIF_TOE for controlling tri-state enable of the data output buffers.

Table 2-21 specifies the possible delay shifts, commonly valid for address, command, CKE, DQM an
ports.

SDRAM port timing specifications in table 2-22 are valid for a configured delay value 00b.
The user can add the given delay shifts to the appropriate minimum and maximum values for differen
figurations.

Note that additional delay shifts have to be subtracted for input setup timings and delay shifts have
added for output delay, output hold and input hold timings.
For data input this could be used to shift the data sampling point later with regard to the internal clo

For calculating shifted output parameters the user should take minimum delay shifts for MIN delay
and maximum delay shifts for MAX delay/hold. However input characteristics are always valid under M
operating conditions and have to be shifted by delay shift value given in MAX column. Input character
are given in the MIN column because they are minimum requirements.

The timing values given in table 2-22 and table 2-23 are related to Lavender SDRAM clock
(SDC_CLK).
Because the clock output path depends on external capacitance also the input setup and hold time
pacitance dependend which is normally not the case (see also chapter 2.5.2).

Table 2-20: SDRAM Clock Output Timing

Parameter Symbol @10pF [ps] @30pF [ps]

max. SDRAM Clock (SDC_CLK) Output
Delay Time

tODSDCCLK 7100 8470

min. SDRAM Clock (SDC_CLK) Output
Hold Time

tOHSDCCLK 2850 3480

Table 2-21: Configurable Delay Shifts by SDIF

SDIF Setup Min Delay Shift [ps] Max Delay Shift [ps]

00b 0 0

01b 650 1920

10b 1240 3620

11b 1720 5030
Page 285

MB87J2120, MB87P2020-A Hardware Manual
Table 2-22: SDRAM Port Timing for Lavender

Parameter Symbol @10pF[ps] @30pF[ps]

SDRAM Data (SDC_D) Input Setup Time (max

cond.)a

a. Related to SDRAM clock pin (SDC_CLK).

tSSDCD 2520 3890

SDRAM Data (SDC_D) Input Hold Time (max
cond.)

tHSDCD -850 -1480

Table 2-23: SDRAM Port Timing for Lavender, Output Characteristics

Parameter Symbol @10pF [ps] @30pF [ps]

max. SDRAM Address (SDC_A) Output Delay Time tODSDCA 3870 4250

min. SDRAM Address (SDC_A) Output Hold Time tOHSDCA 1280 1410

max. SDRAM Command Output Delay Time
(SDC_RAS/SDC_CAS/SDC_WE)

tODSDCCMD 3820 4180

min. SDRAM Command Output Hold Time
(SDC_RAS/SDC_CAS/SDC_WE)

tOHSDCCMD 1270 1400

max. SDRAM Clock Enable (SDC_CKE) Output
Delay Time

tODSDCCKE 3520 3930

min. SDRAM Clock Enable (SDC_CKE) Output
Hold Time

tOHSDCCKE 1150 1290

max. SDRAM Data Enable/Mask (SDC_DMQ) Out-
put Delay Time

tODSDCDQM 3800 4180

min. SDRAM Data Enable/Mask (SDC_DMQ) Out-
put Hold Time

tOHSDCDQM 1280 1410

max. SDRAM Data (SDC_D) Output Delay Time tODSDCD 6160 6590

min. SDRAM Data (SDC_D) Output Hold Time tOHSDCD 1240 660
Page 286

PART D - Appendix
Page 287

MB87J2120, MB87P2020-A Hardware Manual
Page 288

D-1 Jasmine Command and Regis-
ter Description
Page 289

MB87J2120, MB87P2020-A Hardware Manual
Page 290

Register Description

) with
rts.

isters
smine.

ed in

and
re
1 Register Description

Table 1-2 shows all registers and bit groups of MB87P2020-A (Jasmine) and MB87J2120 (Lavender
a short explanation. A more detailed description can be found in the component specific manual pa

In table 1-2 valid registers or bitgroups for every device are marked in additional columns. Some reg
or bitgroups are listed twice, separated for every device, since they are different for Lavender and Ja

Additionaly some special registers exist which are marked in table 1-2 with a special code explain
table 1-1.

Table 1-1: Marking for special registers

Mark Description

R Read only register or bitgroup

W Write only register or bitgroup

F Hardware flag (value can be manipulated by hardware)

M Register write access is locked ifMTIMON_ON=1 (GPU master switch)

C These registers have an internal shadow register which is synchronized to comm
execution. If a command is running the shadow register is locked, written values a
stored and take effect only when next command is started.
For reading always the user writeable register is returned.

D Like ’C’ but reading is configurable withREADINIT_RCR

Table 1-2: Register address space for Jasmine and Lavender

Register Bits Group
Name

L
av

en
de

r

Ja
sm

in
e

Sp
ec

ia
l Description Default

value
Name Address

ULB (User Logic Bus Controller)

CMD 0x0000 Command register

31:8 PAR o o C Command parameter 0

7:0 CODE o o C Command code
(for writing check
FLNOM_CWEN)

0xFF (NoOp)

IFIFO 0x0004 31:0 - o o W Input FIFO
Only word access is allowed.

-

OFIFO 0x0008 31:0 - o o R Output FIFO
Only word access is allowed.

-

FLNOM 0x000C 31:0 - o o F Flag register (normal write

access)a
0x20400000

FLRST 0x0010 31:0 - o o F Flag register (reset write

access)a

1: Reset flag at this position

0x20400000
Register Description Page 291

MB87J2120, MB87P2020-A Hardware Manual
FLSET 0x0014 31:0 - o o F Flag register (set write

access)a

1: Set flag at this position

0x20400000

INTNOM 0x0018 31:0 - o o Interrupt mask register (nor-

mal write access)a

1: use flag for interrupt

0

INTRST 0x001C 31:0 - o o Interrupt mask register (reset

write access)a

1: Reset mask at this position

0

INTSET 0x0020 31:0 - o o Interrupt mask register (set

write access)a

1: Set mask at this position

0

INTLVL 0x0024 31:0 o o Interrupt level/edge settingsa

1: positive edge of flag trig-
gers interrupt
0: high level of flag triggers
interrupt

0

INTREQ 0x0028 Interrupt request length

5:0 INTCLK o Interrupt request length in
ULB clocks (CLKM)

0x10

RDYTO 0x002C RDY timeout control register

7:0 RDYTO o RDY timeout length in ULB
clocks (CLKM)

0xFF

8 RDTOEN o RDY timeout enable
1: enable RDY timeout

1

RDYADDR 0x0030 RDY timeout address register
(read only)

20:0 ADDR o R Address where RDY timeout
occurred

0

Table 1-2: Register address space for Jasmine and Lavender

Register Bits Group
Name

L
av

en
de

r

Ja
sm

in
e

Sp
ec

ia
l Description Default

value
Name Address
Page 292

Register Description
IFCTRL 0x0034 MCU interface control regis-
ter

9:8 SMODE o Sample mode for bus control
signals
00: 3 point mode
01: 2 of 3 point mode
10: 2 point mode
11: 1 point mode

0

5 DRINV o 1: invertULB_DREQ 0

4 DSINV o 1: invertULB_DSTP 0

3 INTINV o 1: invertULB_INTRQ 0

2 DRTRI o 1: open drain forULB_DREQ 0

1 DSTRI o 1: open drain forULB_DSTP 0

0 INTTRI o 1: open drain for
ULB_INTRQ

0

WNDOF0 0x0040 20:0 OFF o o MCU offset for SDRAM
window 0

0x10’0000

WNDSZ0 0x0044 20:0 SIZE o o Size of SDRAM window 0 0x10’0000

WNDOF1 0x0048 20:0 OFF o o MCU offset for SDRAM
window 1

0x10’0000

WNDSZ1 0x004C 20:0 SIZE Size of SDRAM window 1 0x10’0000

WNDSD0 0x0050 19:0 OFF o SDRAM offset for SDRAM
window 0

0

22:0 o

WNDSD1 0x0054 19:0 OFF o SDRAM offset for SDRAM
window 1

0

22:0 o

SDFLAG 0x0058 0 EN o o ’1’: enable SDRAM space
’0’: any access to SDRAM
space is ignored

0

IFUL 0x0080 Input FIFO limits

22:16 UL o Input FIFO upper limit for
flag- or interrupt controlled
flow control
IFH=1 if
IFLOAD >= IFUL_UL

0x0C

23:16 o

6:0 LL o Input FIFO lower limit for
flag- or interrupt controlled
flow control
IFL=1 if
IFLOAD <= IFUL_LL

0x03

7:0 o

Table 1-2: Register address space for Jasmine and Lavender

Register Bits Group
Name

L
av

en
de

r

Ja
sm

in
e

Sp
ec

ia
l Description Default

value
Name Address
Register Description Page 293

MB87J2120, MB87P2020-A Hardware Manual
OFUL 0x0084 Output FIFO limits

22:16 UL o Output FIFO upper limit for
flag- or interrupt controlled
flow control
OFH=1 if
OFLOAD >= OFUL_UL

0x3C

23:16 o

6:0 LL Output FIFO lower limit for
flag- or interrupt controlled
flow control
OFL=1 if
OFLOAD <= IFUL_LL

0x0F

IFDMA 0x0088 Input FIFO limits for DMA
transfer

22:16 UL o Upper limit for DMA access
to input FIFO (not used)

0x0A

23:16 o

6:0 LL o Lower limit for DMA access
to input FIFO

0x3C

7:0 o

OFDMA 0x008C Output FIFO limits for DMA
transfer

22:16 UL o Upper limit for DMA access
from output FIFO

0x0A

23:16 o

6:0 LL o Lower limit for DMA access
from output FIFO (not used)

0x3C

7:0 o

Table 1-2: Register address space for Jasmine and Lavender

Register Bits Group
Name

L
av

en
de

r

Ja
sm

in
e

Sp
ec

ia
l Description Default

value
Name Address
Page 294

Register Description
DMAFLAG 0x0090 DMA flag register

12:8 DSTP o o Duration ofDSTP signal.
This value can be set in order
to ensure a save MCU-
DMAC reset. Normally the
default value should work.

7

4 TRI o 1: Open drain for
ULB_DREQ, ULB_DSTP,
ULB_INTRQ

0

3 INV o 1: InvertULB_DREQ,
ULB_DSTP, ULB_INTRQ

0

2 MODE o o ’1’: DMA demand mode
’0’: DMA block/step- or burst
mode

0

1 EN o o ’1’: enable DMA 0

0 IO o o ’1’: use DMA for input FIFO
’0’: use DMA for output
FIFO

1

FLAGRES 0x0094 Flag behaviour registera

31:0 - o o 1: set flag to dynamic behav-

iourb

0: set flag to static behaviour

0x20400000

ULBDEB 0x0098 FIFO debug register (read
only)

23:16 IFLC o R Input FIFO load for current
command
Attention: This value
changes with core clock; cor-
rect sampling by MCU can’t
be ensured.

0x00

22:16 o

15:8 OF o R Output FIFO load
Attention: This value
changes with core clock; cor-
rect sampling by MCU can’t
be ensured.

0x00

14:8 o

7:0 IF o R Input FIFO load independent
from current command
Attention: This value
changes with core clock; cor-
rect sampling by MCU can’t
be ensured.

0x00

6:0 o

Table 1-2: Register address space for Jasmine and Lavender

Register Bits Group
Name

L
av

en
de

r

Ja
sm

in
e

Sp
ec

ia
l Description Default

value
Name Address
Register Description Page 295

MB87J2120, MB87P2020-A Hardware Manual
CMDDEB 0x009C Command debug register
(read only)

31:8 PAR o R Parameter for currently exe-
cuted command

0x000000

7:0 CMD o R Code for currently executed
command

0xFF

SDC (SDRAM Controller)

SDSEQRAM
[32]
(Jas-
mine)

SDSEQRAM
[64]
(Laven-
der)

0x0100-
0x017C
(Jas-
mine)

0x0100-
0x01FC
(Laven-
der)

SDRAM sequencer RAM
(32 words)

12:7 ADDR o Microcode sequencer address
argument

undef

11:7 o

6:4 INST o o Microcode instruction:
run, ret, call, loop, srw, rrw,
pde, pdx - coded 0 to 7)

undef

3 RAS o o Container command for
SDRAM (RAS)

undef

2 CAS o o Container command for
SDRAM (CAS)

undef

1 WE o o Container command for
SDRAM (WE)

undef

SDMODE 0x0200 SDRAM Mode Register
(external SDRAM MRS reg-
ister; Lavender only),
Bit [12:10, 8:7] reserved, set
to ’0’

9 BRST o Write enable
0: Burst
1: Single

0

6:4 CL o CAS latency (2/3) 0x3

3 ILB o 1: Interleave burst
0: Sequential burst

0

2:0 BLEN o Burst length (0=1, 1=2, 2=4,
3=8, 7=full)

0x3

SDINIT 0x0204 15:0 IP o o Sysclocks of SDRAM power
up initialization period (200
us)

0x4E20

SDRFSH 0x0208 15:0 RP o o Sysclocks of SDRAM row
refresh period (16 us)

0x0640

Table 1-2: Register address space for Jasmine and Lavender

Register Bits Group
Name

L
av

en
de

r

Ja
sm

in
e

Sp
ec

ia
l Description Default

value
Name Address
Page 296

Register Description
SDWAIT 0x020C SDRAM timings (refer to
SDRAM manual)

20 OPT o Bank interleave optimization 1

19:16 TRP o o RAS Precharge Time - 1 0x2

15:12 TRRD o RAS to RAS Bank Active
Delay Time - 1

1

11:8 TRAS o o RAS Active Time - 1 0x5

7:4 TRCD o o RAS to CAS Delay Time - 1 0x2

3:0 TRW o o Read to Write recovery time
Recommended values:

Lavender: 10 (8)c

Jasmine: 7 (5)c

0x3
Value for-
bidden!

Use recom-
mended val-

ues!

SDIF 0x0210 SDRAM port interface timing
(scalable clock delay) - is
ignored by Jasmine

7:6 TAO o Address output delay 0

5:4 TDO o Data output delay 0

3:2 TDI o Data sampling delay 0

1:0 TOE o Tristate control delay 0

SDCFLAG 0x0214 SDC control register

1 DQMEN o 1: Enable DQM partial write
optimization

0

0 BUSY o o Set busy flag during micro-
program upload

0

GPU (Graphic Processing Unit)

GPU-LDR (Layer Description Record)

PHA[16] 0x1000 -
0x103C

Physical layer address in
SDRAM

19:0 OFS o Address offset (RA, CA,
BYTE)
Bits[9:0] fixed to zero

undef

22:0 o Address offset (RA, BA, CA,
BYTE)
Bits[11:0] fixed to zero

DSZ[16] 0x1040 -
0x107C

Layer domain size

29:16 o o o o dimension of layer Size undef

Table 1-2: Register address space for Jasmine and Lavender

Register Bits Group
Name

L
av

en
de

r

Ja
sm

in
e

Sp
ec

ia
l Description Default

value
Name Address
Register Description Page 297

MB87J2120, MB87P2020-A Hardware Manual
DP1[16] 0x1080 -
0x10BC

First pixel in domain (mem-
ory offset)

29:16 o o o Offset for o dimension undef

13:0 Y o o Offset for Y dimension undef

WSZ[16] 0x10C0 -
0x10FC

Display window size for layer

29:16 o o o Size in o dimension undef

13:0 y o o Size in Y dimension undef

WOF[16] 0x1100 -
0x113C

Layer offset for display

29:16 o o o Offset for o dimension undef

13:0 y o o Offset for Y dimension undef

LTC[16] 0x1140 -
0x117C

Transparent colour for layer

23:0 COL o o Colour code depending on
layer colour depth (LSB
aligned)

undef

LBC[16] 0x1180 -
0x11BC

Blink colour for layer

23:0 COL o o Colour code depending on
layer colour depth (LSB
aligned)

undef

LAC[16] 0x11C0 -
0x11FC

Blink alternative colour for
layer

23:0 COL o o Colour code depending on
layer colour depth (LSB
aligned)

undef

LBR[16] 0x1200 -
0x123C

Blink rate for layer

15:8 OFF o o Number of frames for alter-
nate colour

undef

7:0 ON o o Number of frames for blink
colour

undef

CSPC[16] 0x1240 -
0x127C

Colour space code and flag
register

9 LDE o o Line doubling enable undef

8 TE o o Transparency enable undef

3:0 CSC o o Colour space code undef

GPU-MDR (Merging Description Record)

Table 1-2: Register address space for Jasmine and Lavender

Register Bits Group
Name

L
av

en
de

r

Ja
sm

in
e

Sp
ec

ia
l Description Default

value
Name Address
Page 298

Register Description
CFORMAT 0x1300 31:16 LITC o o Layer to intermediate trans-
fer codes (one bit for each
layer)

0x0000

7 GAMEN o 1: Gamma table enable 0

6 IPOLEN o 1: Interpolation for YUV422
colour code enable

0

5 GFORCE o 1: Force Gamma conversation
for RGB>= 16bpp

0

3:0 CSC o o Intermediate colour space
code

0x0

BACKCOL 0x1304 Background colour register

24 EN o o 1: Background colour enable 1

23:0 COL o o Background colour depend-
ing on colour depth for inter-
mediate colour space

0x000000

MBC 0x1308 Blink control register

15:0 EN o o Blink enable (one bit for each
layer)

0x0000

31:16 CBS o o R Current blink state (read
only)

0x0000

ZORDER 0x130C Z-Order register

19:16 EN o o Enable (one bit for each
plane)

0x0

15:12 TM3 o o Topmost layer number 0x0

11:8 TM2 o o 0x0

7:4 TM1 o o 0x0

3:0 TM0 o o Bottom layer number 0x0

CLUTOF
[16]

0x1340 -
0x137C

16 CLUT offsets (1 per layer)

7:0 OFS o CLUT offset for layer undef

8:0 o

DRM[14] 0x1380-
0x13B4

Duty ratio modulator pseudo
levels, 14 words

5:0 PGL o o Pseudo level (PGL/64
Frames)

0x00

Table 1-2: Register address space for Jasmine and Lavender

Register Bits Group
Name

L
av

en
de

r

Ja
sm

in
e

Sp
ec

ia
l Description Default

value
Name Address
Register Description Page 299

MB87J2120, MB87P2020-A Hardware Manual
PREBIAS 0x1400 Pre Matrix bias values

23:16 Y o Y value 0xF0

15:8 CB o Cb value 0x80

7:0 CR o Cr value 0x80

COEFFR 0x1404 Matrix coefficients to red
channel

23:16 YXR o Y to Red 0x80

15:8 CBXR o Cb to Red 0x00

7:0 CRXR o Cr to Red 0xB3

COEFFG 0x1408 Matrix coefficients to green
channel

23:16 YXG o Y to Green 0x80

15:8 CBXG o Cb to Green 0x2C

7:0 CRXG o Cr to Green 0x5B

COEFFB 0x140C Matrix coefficients to blue
channel

23:16 YXB o Y to Blue 0x80

15:8 CBXB o Cb to Blue 0xE2

7:0 CRXB o Cr to Blue 0x00

CLUT
[512]
(Jas-
mine)

CLUT
[256]
(Laven-
der)

0x2000 -
0x27FC
(Jas-
mine)

0x2000 -
0x23FC
(Laven-
der)

Colour look-up table

23:0 COL o o Colour for intermediate col-
our space

undef

GAMMA
[256]

0x2800 -
0x2BFC

Gamma Table

23:16 R o Red mapping undef

15:8 G o Green mapping undef

7:0 B o Blue mapping undef

GPU-DIR (Display Interface Record)

PHSIZE 0x3000 Display physical size

29:16 o o o M Width 0x0000

13:0 Y o o M Height 0x0000

Table 1-2: Register address space for Jasmine and Lavender

Register Bits Group
Name

L
av

en
de

r

Ja
sm

in
e

Sp
ec

ia
l Description Default

value
Name Address
Page 300

Register Description
PHFRM 0x3004 Physical format register

27 POL o o M Xfref polarity
 0=odd field ref is low

0

26 VSYAE o o M Xvsync edge
(0=Low/High edge,
 1=High/Low edge)

0

25 HSYAE o o M Xhsync edge
(0=Low/High edge,
 1=High/Low edge)

0

24 IES o o M 0: Internal Sync
1: External Sync

0

18 TDM o M 1: Enable Twin Display mode 0

17:16 SM o o M Scan mode 0

12 FTE o o M 1: Field toggle enable 0

11:8 BSC o o M Bitstream format code 0x0

4 RBSW o o M Swap R/B channel for
RGB111

0

3:0 CSC o o M Physical colour space code 0x0

PHSCAN 0x3008 29:16 SCLK o o M Physical size in scan clocks
(Pixel*BPP/BitsPerScan-
clock)

0

DUALSCOF 0x300C 13:0 OFS o o M Dual scan Y offset 0

MTIMODD
[2]

0x3010 -
0x3014

Master timing, odd field,
First word start, next word
stop.

30:16 o o o M o dimension (2’s comple-
ment)

0x0000

14:0 y o o M Y dimension (2’s comple-
ment)

0x0000

MTMEVEN
[2]

0x3018 -
0x301C

Master timing, even field,
First word start, next word
stop.
(o values fromMTI-
MODD[0,1])

14:0 Y o o M Y dimension (2’s comple-
ment)

0x0000

MTIMON 0x3020 0 ON o o Master timing switch
(0=off,1=on)

0

Table 1-2: Register address space for Jasmine and Lavender

Register Bits Group
Name

L
av

en
de

r

Ja
sm

in
e

Sp
ec

ia
l Description Default

value
Name Address
Register Description Page 301

MB87J2120, MB87P2020-A Hardware Manual
TIMDIAG 0x3024 Diagnostic timing position
output (read only)

30:16 o o o R Current o position (2’s com-
plement)

0x0000

15 FIELD o o R Current field 0

14:0 Y o o R Current Y position (2’s com-
plement)

0x0000

SPG
[6,4]

0x3030 -
0x308C

These registers contain 6
Sync Pulse Generators
(SPG0-SPG5) with each 4
registers.

0

SPGPSON
[6]

0:
0x3030,

1:
0x3040,

2:
0x3050,

3:
0x3060,

4:
0x3070,

5:
0x3080

Position to switch on

30:16 o o o o position (2’s complement) 0x0000

15 FIELD o o Field flag
0: odd; 1: even

0

14:0 Y o o Y position (2’s complement) 0x0000

SPGMKON 0:
0x3034,

1:
0x3044,

2:
0x3054,

3:
0x3064,

4:
0x3074,

5:
0x3084

Don’t care vector for ’Posi-
tion on’ match. (1=do not
include this bit into position
matching)

30:16 o o o o mask 0x0000

15 FIELD o o Field mask 0

14:0 Y o o Y mask 0x0000

SPGPSOF 0:
0x3038,

1:
0x3048,

2:
0x3058,

3:
0x3068,

4:
0x3078,

5:
0x3088

Position to switch off

30:16 o o o o position (2’s complement) 0x0000

15 FIELD o o Field flag
(0=odd, 1=even field)

0

14:0 Y o o Y position (2’s complement) 0x0000

Table 1-2: Register address space for Jasmine and Lavender

Register Bits Group
Name

L
av

en
de

r

Ja
sm

in
e

Sp
ec

ia
l Description Default

value
Name Address
Page 302

Register Description
SPGMKOF 0:
0x303C,

1:
0x304C,

2:
0x305C,

3:
0x306C,

4:
0x307C,

5:
0x308C

Don’t care vector for ’Posi-
tion off’ match (1=do not
include this bit into position
matching)

30:16 o o o o mask 0x0000

15 FIELD o o Field mask 0

14:0 Y o o Y mask 0x0000

SSQCYCLE 0x30FC 5:0 SC o Actual length of sequencer
cycle (SC = Num -1)

0x0

4:0 o

SSQCNTS
[64]

0x3100 -
0x31FC

Sync sequencer RAM con-
tents (64 Words)

31 OUT o o Output value for scan position undef

30:16 SEQX o o o scan position (2’s comple-
ment)

undef

15 FIELD o o Field flag (0: odd;1: even) undef

14:0 SEQY o o Y scan position (2’s comple-
ment)

undef

SMX
[8,2]

0x3200 -
0x323C

Array definition for sync mix-
ers (SMX0-SMX7 with each
2 registers)

0

SMXSIGS 0:
0x3200,

1:
0x3208,

2:
0x3210,

3:
0x3218,

4:
0x3220,

5:
0x3228,

6:
0x3230,

7:
0x3238

Sync mixer

14:12 S4 o o Signal select

Signal to select:
0:const.zero
1:Sequencer out
2...7: Output of SPG0...SPG5

0

11:9 S3 o o 0

8:6 S2 o o 0

5:3 S1 o o 0

2:0 S0 o o 0

Table 1-2: Register address space for Jasmine and Lavender

Register Bits Group
Name

L
av

en
de

r

Ja
sm

in
e

Sp
ec

ia
l Description Default

value
Name Address
Register Description Page 303

MB87J2120, MB87P2020-A Hardware Manual
SMXFCT 0:
0x3204,

1:
0x320C,

2:
0x3214,

3:
0x321C,

4:
0x3224,

5:
0x322C,

6:
0x3234,

7:
0x323C

Function table

31:0 FT o o Output value =
function_table[a]

a=S4*24+S3*23+S2*22+S1

*21+S0*20

Sn: Value (binary) of signal
selected withSMXSIGS_Sn

0x00000000

SSWITCH 0x3240 Output signal delay (sync
switch) register

7:0 CD o o M Sync switch, (0=no; 1=0.5
display clock (CLKD) cycles
delay)

0x00

PIXCLKGT 0x3248 Pixel clock gate register; gate
is output ofSM7

3 HC o o M Clock divider (0=1:1;1=1:2) 0

2 CP o o M Clock polarity (0=true;
1=inverted)

0

1 GON o o M Clock gate enable (1=on/
0=off)

0

0 GT o o M Gate type (0=And; 1=Or) 0

CKLOW 0x3250 Colour key lower limits
(according to physical colour
space)
PinDIS_CKEY is activated
when all pixel channels lie
within their limits (including
limits).

24 OP o o Key out polarity
 (0=active high, 1=active low)

0

23:16 LLR o o Red channel 0x00

15:8 LLG o o Green channel 0x00

7:0 LLB o o Blue/monochrome channel 0x00

Table 1-2: Register address space for Jasmine and Lavender

Register Bits Group
Name

L
av

en
de

r

Ja
sm

in
e

Sp
ec

ia
l Description Default

value
Name Address
Page 304

Register Description
CKUP 0x3254 Colour key upper limits
(according to physical colour
space)
PinDIS_CKEY is activated
when all pixel channels lie
within their limits (including
limits).

23:16 ULR o o Red channel 0x00

15:8 ULG o o Green channel 0x00

7:0 ULB o o Blue/monochrome channel 0x00

ACLAMP 0x3258 Jasmine: Clamping values for
analog outputs (DACs)
Lavender: Clamping values
for analog outputs (DACs)
and digital output

23:16 ACLR o Red channel 0x00

15:8 ACLG o Green channel 0x00

7:0 ACLB o Blue channel 0x00

23:0 DAO o Clamping value for analog
and digital output

0x000000

DCLAMP 0x325C 23:0 DCL o Blanking clamping value for
digital outputs

0x000000

MAINEN 0x3260 Main display output enable
flags

29 REFOE o 1: (internal) reference volt-
age disable
0: (internal) reference volt-
age enable
For Lavender this reference is
connected toDACOE.

0

28 DACOE o o 1: DAC output (A_BLUE,
A_GREEN, A_RED) enable

0

27 CKOE o o 1:DIS_CKEY output enable 0

26 VROE o o 1:DIS_VREF output enable 0

25 VSOE o o 1:DIS_VSYNC output ena-
ble

0

24 HSOE o o 1:DIS_HSYNC output ena-
ble

0

23:0 DOE o o 1: DIS_D[23:0] output enable 0x000000

Table 1-2: Register address space for Jasmine and Lavender

Register Bits Group
Name

L
av

en
de

r

Ja
sm

in
e

Sp
ec

ia
l Description Default

value
Name Address
Register Description Page 305

MB87J2120, MB87P2020-A Hardware Manual
GPU-SDCR (SDC Record)

SDCP 0x3270 SDRAM Controller request
priorities

15:8 IFL o o R Input FIFO load (read-only) 0x00

6:4 HP o o High priority 0x7

2:0 LP o o Low priority 0x3

VIC (Video Interface Controller)

VICSTART 0x4000 Input layer start coordinates
(memory offset for video)

29:16 o o o o offset 0x0000

13:0 Y o o Y offset 0x0000

VICALPHA 0x4004 Replace colour when alpha
pin (VSC_ALPHA) is active
Colour depth depends on
layer

23:0 COL o o Alpha colour 0x000000

Table 1-2: Register address space for Jasmine and Lavender

Register Bits Group
Name

L
av

en
de

r

Ja
sm

in
e

Sp
ec

ia
l Description Default

value
Name Address
Page 306

Register Description
VICCTRL 0x4008 Input control word

7 BSWAP o Swap external channels A and
B to internal channels iA and
iB.
0: A->iA, B->iB
1: A->iB, B->iA

0

6 ALEN o o 1:Enable alpha;
0:Disable alpha

0

5 PORT o o Port mode
1: Double port (port iA and
iB)
0: Single port (port iA only)

1

4 CLOCK o o Video Clock (VSC_CLKV)
mode for data sampling
1: Double clock mode (both
edges)
0: Single clock mode (rising
edge only)

0

3:0 MODE o o Colour mode for video input:
0x4: RGB555
0x5: RGB565
0x6: RGB888
0x7: YUV422
0x8: YUV444
0xE: YUV555
0xF: YUV655

0x6

Table 1-2: Register address space for Jasmine and Lavender

Register Bits Group
Name

L
av

en
de

r

Ja
sm

in
e

Sp
ec

ia
l Description Default

value
Name Address
Register Description Page 307

MB87J2120, MB87P2020-A Hardware Manual
VICFCTRL 0x400C Field control word

22 ODDFST o o Field order within a Frame:
1:Odd field is top field
0:Even field is top field

0

21 FRAME o o Video mode
1:Frame mode (interleave
fields in one layer)
0:Field mode (store one field
in one layer)

0

20 SKIP o o Field skip enable for selected
fields
1: Skip every 2nd filed of
each type
0:Use every field

0

18 VICEN o o 1: General VIC enable 0

17 EVENEN o o 1: Enable even fields 0

16 ODDEN o o 1: Enable odd fields 0

11:8 TRD o o 3rd layer number 0x7

7:4 SEC o o 2nd layer number 0x0

3:0 FST o o 1st layer number 0x6

VICPCTRL 0x4010 Polarity settings for video
control pins

3 ALPHA o o VSC_ALPHA:
1: Low active
0: High active

0

2 FIELD o o VSC_IDENT:
1: Odd field low active
0: Odd field high active

0

1 VACT o o VSC_VACT:
1: Low active, 0: High active

0

0 VREF o o VSC_VREF:
1: Low active, 0: High active

0

Table 1-2: Register address space for Jasmine and Lavender

Register Bits Group
Name

L
av

en
de

r

Ja
sm

in
e

Sp
ec

ia
l Description Default

value
Name Address
Page 308

Register Description
VICFSYNC 0x4014 Control register for video I/O
synchronization

16 REL o o 1: VIC is faster than GPU
0: GPU is faster than VIC

0

15 SYNC o o 1: Three layer mode
0: Two layer mode

0

14:0 SWL o o Switch level for layer switch
in two layer sync mode

0

VICCSYNC 0x4018 Control Word for clock syn-
chronization (Lavender only)

1:0 MODE o Sync Mode
00: Core Clock > Video
Clock
01: Core Clock > 2*Video
Clock
10: Core Clock = Video
Clock
11: Reserved

00

SDRAM 0x401C SDRAM request priority con-
trol register

2:0 LP o o Low priority 0x2

6:4 HP o o High priority 0x6

VICBSTA 0x4020 o o R VIC status register for test
purpose (read only)

VICRLAY 0x4024 Video layer debug register for
test purpose (read only)

19:16 AOVL o R Current output layer (to GPU) undef

11:8 LIVL o R Last input layer (VIC) undef

3:0 AIVL o R Current input layer (VIC) undef

Table 1-2: Register address space for Jasmine and Lavender

Register Bits Group
Name

L
av

en
de

r

Ja
sm

in
e

Sp
ec

ia
l Description Default

value
Name Address
Register Description Page 309

MB87J2120, MB87P2020-A Hardware Manual
VICVISYN 0x4028 Video path control register

25:24 DEL o Negative data delay with
respect toVSC_VACT signal

0

20:16 SHUFF o Bus shuffler for data ports iA,
iB, iA_delayed and
iA_negedge

0

8 START o Selector forVIC_SYNC flaga

source:
0: Video write start
1: Video read start

0

1:0 SEL o Selector for video input pro-
tocol:
00: VPX
01: CCIR-TRC
10: CCIR external sync
11: reserved

00

VICLIMEN 0x402C 0 LIMENA o 1: Enable video limitation
unit

0

VICLIMH 0x4030 Horizontal limitation settings

26:16 HEN o Horizontal window length
including offset

0x000

10:0 HOFF o Horizontal window offset 0x000

VICLIMV 0x4034 Vertical limitation settings

26:16 VEN o Vertical window length
including offset

0x000

10:0 VOFF o Vertical window offset 0x000

Table 1-2: Register address space for Jasmine and Lavender

Register Bits Group
Name

L
av

en
de

r

Ja
sm

in
e

Sp
ec

ia
l Description Default

value
Name Address
Page 310

Register Description
EXTPCTRL 0x4038 Polarity control register for
CCIR mode with external
video synchronization.

3 ALPHA o Alpha (pinVSC_ALPHA)
0: high active
1: low active

0

2 PARITY o Parity (pinVSC_IDENT)
0: polarity unchanged
1: invert polarity

0

1 HREF o Horizontal reference signal
(pin VSC_VACT)
0: high active
1: low active

0

0 VREF o Vertical reference signal (pin
VSC_VREF)
0: high active
1: low active

0

PP (Pixel Processor)

BGCOL 0x4100 Background pixel colour

24 EN o o D 1: Enable background colour 0

23:0 COL o o D Background colour data 0x000000

FGCOL 0x4104 23:0 o o D Foreground pixel colour 0x000000

IGNORCOL 0x4108 Ignored pixel colour (PutBM,
PutCP)

24 EN o o D 1: enable ignore colour 0

23:0 COL o o D Ignore colour data 0x000000

LINECOL 0x410C 23:0 COL o o D Line colour (DwLine) 0x000000

PIXCOl 0x4110 23:0 COL o o D Colour for pixel with fixed
colour (PutPxFC)

0x000000

PLCOL 0x4114 23:0 COL o o D Polygon colour (DwPoly) 0x000000

RECTCCOL 0x4118 23:0 COL o o D Rectangle colour (DwRect) 0x000000

XYMAX 0x411C Pixel stop address for pixel
processor bitmap commands
(PutBM, PutCP, PutTxtBM,
PutTxtCP)

29:16 XMAX o o D o dimension for stop point 0x0000

13:0 YMAX o o D Y dimension for stop point 0x0000

Table 1-2: Register address space for Jasmine and Lavender

Register Bits Group
Name

L
av

en
de

r

Ja
sm

in
e

Sp
ec

ia
l Description Default

value
Name Address
Register Description Page 311

MB87J2120, MB87P2020-A Hardware Manual
XYMIN 0x4120 Start address for pixel proces-
sor bitmap commands
(PutBM, PutCP, PutTxtBM,
PutTxtCP)

29:16 XMIN o o D o dimension for start point 0x0000

13:0 YMIN o o D Y dimension for start point 0x0000

PPCMD 0x4124 Configuration for pixel proc-
essor commands

28 ULAY o D 1: Use target layer for draw-
ing commands

0

27:24 LAY o o D Target layer for commands
PutBM, PutCP,
PutTxtBM,PutTxtCP

0x0

8 DIR o o D Direction for sequential com-
mands PutBM, PutCP,
PutTxtBM, PutTxtCP
0: Horizontal, 1:Vertical

0

1:0 MIR o o D Mirror for sequential com-
mands PutBM, PutCP,
PutTxtBM, PutTxtCP
00: No mirror, 01: o-mirror,
10: Y-mirror,11:XY-mirror

0x0

SDCPRIO 0x4128 2:0 PRIO o o D Priority for SDC interface 0x0

REQCNT 0x412C 7:0 MFB o o D MFB+1: Minimum FIFO-
block size before activating a
SDRAM request
(0<=MFB<64)

0x00

READINIT 0x4130 0 RCR o o Read control registers for
pixel processor (address
range: 0x4100-0x4130)
0: read back PP internal regis-
ter
1: read back PP user writea-
ble register

0

DIPA (Direct and Indirect Physical memery Access)

DIPACTRL 0x4200 DIPA control register

18:16 PDPA o o DPA priority for SDC access 0x0000

2:0 PIPA o o IPA priority for SDC access 0x0000

Table 1-2: Register address space for Jasmine and Lavender

Register Bits Group
Name

L
av

en
de

r

Ja
sm

in
e

Sp
ec

ia
l Description Default

value
Name Address
Page 312

Register Description
DIPAIF 0x4204 IPA input FIFO control regis-
ter

23:16 MAX o Input FIFO max. block size 0x0002

22:16 o

7:0 MIN o Input FIFO min. block size 0x0002

6:0 o

DIPAOF 0x4208 IPA output FIFO control reg-
ister

23:16 MAX o Output FIFO max. block size 0x0001

22:16 o

7:0 MIN o Output FIFO min. block size 0x0001

6:0 o

CCFL (Cold Cathode Fluorescence Light Driver)

CCFL1 0x4400 CCFL control register

28 SSEL o Synchronization select:
0: use SNCS flag
1: sync to output of GPU sync
mixer 5

0

27 EN o o 1: CCFL enable 0

26 PROT o o 1: Protect old settings during
configuration

0

25 SNCS o o Synchronization select:
0: internal (vsync from GPU),
1: software

0

24 SYNC o o 1: Synchronization trigger by
software

0

7:0 SCL o o Timebase scale factor
(Derived from System clock
(CLKK))

0x00

CCFL2 0x4404 CCFL Duration Register
(Unit: 4 Timebase Clocks)

31:16 FLS o o Flash Duration 0x0000

15:8 PSE o o Pause Duration 0x00

7:0 IGNT o o Ignition Duration 0x00

AAF (Anti Aliasing Filter)

Table 1-2: Register address space for Jasmine and Lavender

Register Bits Group
Name

L
av

en
de

r

Ja
sm

in
e

Sp
ec

ia
l Description Default

value
Name Address
Register Description Page 313

MB87J2120, MB87P2020-A Hardware Manual
AATR 0x4500 Thresholds for red channel

15:8 TH2 o o Threshold2 0x00

7:0 TH1 o o Threshold1 0xFF

AATG 0x4504 Thresholds for green channel

15:8 TH2 o o Threshold2 0x00

7:0 TH1 o o Threshold1 0xFF

AATB 0x4508 Thresholds for blue channel

15:8 TH2 o o Threshold2 0x00

7:0 TH1 o o Threshold1 0xFF

AAOE 0x450C AAF options

1 BX4 o 1: AAF block size 4x4
0: AAF block size 2x2

0

0 WB0 o o 1: Enable write back optimi-
zation

0

CU (Clock Unit)

Table 1-2: Register address space for Jasmine and Lavender

Register Bits Group
Name

L
av

en
de

r

Ja
sm

in
e

Sp
ec

ia
l Description Default

value
Name Address
Page 314

Register Description
CLKCR 0xFC00 Clock configuration register

31:30 DCS o o Direct clock source
00: Crystal (pinsOSC_IN
andOSC_OUT),
01: Pixel clock (pin
DIS_PXCLK)
10: MCU clock (pin
ULB_CLK)
11: Reserved clock (pin
RCLK)

00

29:24 SCP o o System clock (CLKK) pres-
caler

0

23:22 PCS o o PLL clock source
00: Crystal (pinsOSC_IN
andOSC_OUT),
01: Pixel clock (pin
DIS_PXCLK)
10: MCU clock (pin
ULB_CLK)
11: Reserved clock (pin
RCLK)

00

21:16 PFD o o PLL feedback divider 0x00

15 SCSL o o System clock (CLKK) select
0: direct clock source
1: PLL clock source

0

14 PCSL o o Pixel clock (CLKD) select
0: direct clock source
1: PLL clock source

0

13 IPC o o Pixel clock (CLKD) invert
0: not inverted
1: inverted

0

12 PCOD o o Pixel clock output
(DIS_PXCLK) disable
0: internal pixel clock (CLKD
output)
1: external pixel clock
(DIS_PXCLK input)

1

11 DBG o 1: Core clock (CLKK) debug
mode (output at pin
SPB_TST)

0

10:0 PCP o o Pixel clock prescaler value 0x000

Table 1-2: Register address space for Jasmine and Lavender

Register Bits Group
Name

L
av

en
de

r

Ja
sm

in
e

Sp
ec

ia
l Description Default

value
Name Address
Register Description Page 315

MB87J2120, MB87P2020-A Hardware Manual
CLKPDR 0xFC04 Clock power down register

31:24 ID o o R Chip ID (read only)
00: MB87J2120 (Lavender)
01: MB87P2020(-A) (Jas-
mine)

01

23:16 SID o o R Chip Sub-ID (read only)
00: MB87J2120 (Lavender)
and MB87P2020 (Jasmine)
01: MB87P2020-A (Jasmine
Redesign)

01

15 MRST o W Master hardware reset
Write 1: Start Reset
Write 0: Stop Reset
Read: returns always ’0’

0

o F Master hardware reset
Write 1: Start Reset (stops
automatically)
Write 0: No effect
Read: returns current value

14 LCK o R PLL lock (read only)
1: PLL has locked to input
frequency

undef

13 - o reserved; set to 0 0

12 VII o 1: Invert Video Clock
(CLKV)

0

o R PLL lock (read only)
1: PLL has locked to input
frequency

undef

11 RUN o o PLL enable
1: PLL on
0: PLL off

0

10 GPU o o 1: Enable GPU clocks 0

9 ULB o o 1: Enable ULB clocks 0

8 SPB o o 1: Enable SPB clock 0

7 CCFL o o 1: Enable CCFL clock 0

6 SDC o o 1: Enable SDC clock 0

5 VIS o o 1: Enable VIC clocks 0

4 DIPA o o 1: Enable DIPA clock 0

3 AAF o o 1: Enable AAF clock 0

2 MCP o o 1: Enable PP-MCP clock 0

Table 1-2: Register address space for Jasmine and Lavender

Register Bits Group
Name

L
av

en
de

r

Ja
sm

in
e

Sp
ec

ia
l Description Default

value
Name Address
Page 316

Register Description
1 MAU o o 1: Enable PP-MAU clock 0

0 PE o o 1: Enable PP-PE clock 0

a. See chapter 2 for a description of bit groups for flags.

b. Dynamic behaviour means that a hardware flag reset is possible.

c. Setting in ’()’ is an optimized setting if no AAF is used.

Table 1-2: Register address space for Jasmine and Lavender

Register Bits Group
Name

L
av

en
de

r

Ja
sm

in
e

Sp
ec

ia
l Description Default

value
Name Address
Register Description Page 317

MB87J2120, MB87P2020-A Hardware Manual
Page 318

Flag Description

ocess
ccess

ile
nt. In
2 Flag Description

Table 2-1 contains all flags for MB87P2020-A (Jasmine) and MB87J2120 (Lavender).

In order to avoid data inconsistencies during bit masking within flag register a mask (and/or gating) pr
is implemented in hardware for flag register. To distinguish between flag set-, reset- and direct write a

different addresses are used1:

• FLNOM (0x000C):normal write operation

• FLRST (0x0010):reset operation (1: reset flag on specified position; 0: don’t touch)

• FLSET (0x0014):set operation (1: set flag on specified position; 0: don’t touch)

All of these three addresses write physically to one register with three different methods.

For reading all three addresses return the value of flag register.

Every flag can have a different reset behaviour. With help of registerFLAGRES the application can choose
whether the hardware is allowed to reset the desired flag (dynamic behaviour,FLAGRES_x=1) or not (stat-
ic behaviour,FLAGRES_x=0). With dynamic behaviour the flag follows the driving hardware signal wh
with static behaviour the application is responsible for resetting the flag in order to catch next eve
table 2-1 the default reset behaviour at system start up is given in last column.

Note that some flags are only available for Jasmine..

1. Additionally all access types (word, halfword and byte) are possible for each of these addresses.

Table 2-1: Flags for MB87J2120 (Lavender) and MB87P2020-A (Jasmine)

Name Bit

L
av

en
de

r

Ja
sm

in
e

Description
Default

behaviour
(FLAGRES)

VICSYN 31 X

A frame or field has been written to or read from
SDRAM
Which event is signalled by this flag depends on VIC set-
tings:
VICFCTRL_FRAME determines the storage type within
SDRAM (field or frame). For details see VIC description
and register list.
VICVISYN_START determines whether a write or read
start should trigger the flag

static
(0)

ERDY 30 X
RDY timeout error has occurred
See ULB description and register description forRDYTO
andRDYADDR

static
(0)

RDPA 29 X X

1: DPA write access is enabled.
This flag has to be polled before each DPA (write-)

access to ensure a save SDRAM accessa. Otherwise data
loss may occur.

dynamic
(1)

FDPA 28 X X
1: DPA has finished SDRAM access and is ready for next
one.

static
(0)

RIPA 27 X X
1: IPA is ready for command execution static

(0)

RMCP 26 X X
1: MCP is ready for command execution static

(0)
Flag Description Page 319

MB87J2120, MB87P2020-A Hardware Manual
RMAU 25 X X
1: MAU is ready for command execution static

(0)

RPE 24 X X
1: PE is ready for command execution static

(0)

EBPP 23 X X

1: Colour depth for source- and target layer is different
during MemCP command
In this error case MCP reads data from input FIFO but
performs no further actions.

static
(0)

CWEN 22 X X

1: Command register can be written.
This flag has to be polled before a command can be writ-

tena. Otherwise data loss and synchronization loss
between Jasmine/Lavender and MCU may occur.

dynamic
(1)

EINT0 21 X X

1: Lavender/Jasmine external interrupt occurred
This interrupt is currently assigned to SPB device which
is implemented on chip but outside the Lavender/Jasmine
core.

static
(0)

STOUT 20 X X

After reset: Flag is set (’1’) when SDRAM initialisation
time is over
Else: Flag is set (’1’) when SDC forces SDRAM refresh.
This indicates a high SDRAM bus load.

static
(0)

GSYNC 19 X X This flag is directly connected to GPU Sync Mixer 6b.
The Sync Mixer default settings generate no sync signal.

static
(0)

BWVIO 18 X X
1: GPU bandwidth violation occurred which means that
the GPU didn’t receive requested data from SDRAM.
This flag indicates a high SDRAM bus load.

static
(0)

EOV 17 X X
1: A command pipeline overflow has occurred.
A command was sent to Jasmine whileCWEN flag was
’0’.

static
(0)

ECODE 16 X X
1: Wrong error code was written to command register
This command code is internally treated asNoOp com-
mand.

static
(0)

EDATA 15 X
1: Execution device (PP or IPA) tried to read from empty
input FIFO
This may indicate a wrong behaviour of execution device.

static
(0)

BDPA 12 X X
1: DPA is performing an SDRAM access. static

(0)

BIPA 11 X X
1: IPA is executing a command static

(0)

BMCP 10 X X
1: MCP is executing a command static

(0)

BMAU 9 X X
1: MAU is executing a command static

(0)

Table 2-1: Flags for MB87J2120 (Lavender) and MB87P2020-A (Jasmine)

Name Bit

L
av

en
de

r

Ja
sm

in
e

Description
Default

behaviour
(FLAGRES)
Page 320

Flag Description
BPE 8 X X
1: PE is executing a command static

(0)

OFL 7 X X
1: Output FIFO load is equal or lower than programmable
output FIFO lower limit (OFUL_LL).

static
(0)

OFH 6 X X
1: Output FIFO load is equal or higher than programma-
ble output FIFO upper limit (OFUL_UL).

static
(0)

OFE 5 X X
1: Output FIFO is empty. static

(0)

OFF 4 X X
1: Output FIFO is full. static

(0)

IFL 3 X X
1: Input FIFO load is equal or lower than programmable
input FIFO lower limit (IFUL_LL).

static
(0)

IFH 2 X X
1: Input FIFO load is equal or higher than programmable
input FIFO upper limit (IFUL_UL).

static
(0)

IFE 1 X X
1: Input FIFO is empty. static

(0)

IFF 0 X X
1: Input FIFO is full. static

(0)

a. Alternative this flag can cause an interrupt and writing can be done inside Interrupt Service Routine (ISR).

b. See GPU description for details about Sync Mixer settings.

Table 2-1: Flags for MB87J2120 (Lavender) and MB87P2020-A (Jasmine)

Name Bit

L
av

en
de

r

Ja
sm

in
e

Description
Default

behaviour
(FLAGRES)
Flag Description Page 321

MB87J2120, MB87P2020-A Hardware Manual
Page 322

Command Description

. Not

), com-
nd out-

ithout
3 Command Description

Jasmine command register width is 32 Bit. It is divided into command code and parameters:

Partial writing of command register is supported. Write to ’code’, byte 3 triggers command execution
all commands need parameters. In this case parameter section is ignored.

3.1 Command List

All commands are listed with mnemonic, command code and command parameters (if necessary
mand function, registers evaluated by by the command, source and target for command data (input a
put data if required).

Registers shown in table 3-1 are double buffered. Write access during running command is possible w
affecting current operation. Values become valid after next command is started.

Table 3-1: Command List

Mnemonic Code Device Function Registers

SwReset 00h ULB,
IPA,
PE,
MAU,
MCP,
AAF

Reset ULB command controller, IPA and
drawing devices of PP, initialize FIFOs
(PP-FIFOs, IFIFO, OFIFO). Only devices
participated on command procession are

initialized.a

-

PutBM 01h PE Store an uncompressed bitmap in Video
RAM (finite command).

Source:
IFIFO with n*[bitmap colour data]
n=(Xmax-Xmin+1)*(Ymax-
Ymin+1)*bpp/32

Target:
Video RAM area which is defined by
{Xmax,Xmin}, {Ymax,Ymin},
PPCM_LAY and PPCMD_MIR. Pixel with
IGNORCOL_COL are not written if
IGNORCOL_EN = ’1’.

XYMAX
XYMIN
IGNORCOL_EN
IGNORCOL_COL
PPCMD_LAY
PPCMD_EN
PPCMD_DIR
PPCMD_MIR

IFIFO

07

code

31

parameters
Command Description Page 323

MB87J2120, MB87P2020-A Hardware Manual
PutCP 02h PE Store an compressed bitmap (TGA run-
length coded) in Video RAM (finite com-
mand).

Source:
IFIFO with n*[bitmap RLE data]
n depends on compression factor. If
number of decompressed pixels is not suffi-
cient
(Xmax-Xmin+1)*(Ymax-Ymin+1), PE
will not become ready and waits for data.

Target:
Video RAM area which is defined by
{Xmax, Xmin}, {Ymax, Ymin},
PPCM_LAY and PPCMD_MIR. Pixel with
IGNORCOL_COL are not written if
IGNORCOL_EN = ’1’.

XYMAX
XYMIN
IGNORCOL_EN
IGNORCOL_COL
PPCMD_LAY
PPCMD_EN
PPCMD_DIR
PPCMD_MIR

IFIFO

DwLine 03h PE Draw Lines. The calculated pixel data are
stored into Video RAM (infinite com-
mand). Colour is defined by LINECOL.

Source:
ULB input fifo with start and end points
n*([Xs,Ys], [Le,Xe,Ye]), n = number of
lines. Layer of end point ignored if
PPCMD_ULAY is set. Then
PPCMD_LAY is used instead of.

Target:
Line of pixels between start and end point
in selected layer in Video RAM.

Notes:
LINECOL or PPCMD changes apply after
new command only. Layer information in
pixel address can change with each line.
Only relevant bits of LINECOL register are
used, depending on colour depht.

LINECOL
PPCMD_LAY
PPCMD_ULAY
PPCMD_EN

IFIFO

Table 3-1: Command List

Mnemonic Code Device Function Registers
Page 324

Command Description
DwRect 04h PE Draw Rectangles. The calculated pixel data
are stored into Video RAM (infinite com-
mand). Colour is defined by RECTCOL.

Source:
ULB input fifo with start and end point
n*([Xs,Ys], [Le,Xe,Ye]), n = number of
rectangles. Layer of endpoint ignored if
PPCMD_ULAY is set. Then
PPCMD_LAY is used instead of.

Target:
Rectangular area of pixels between start
and end point in selected layer in Video
RAM.

Notes:
RECTCOL or PPCMD changes apply after
new command only. Layer information in
pixel address can change with each line.
Only relevant bits of RECTCOL register
are used, depending on colour depht.

RECTCOL
PPCMD_LAY
PPCMD_ULAY
PPCMD_EN

IFIFO

PutTxtBM 05h PE Store uncompressed pixel data with fixed
foreground or background Colour into
Video RAM (finite command).

Source:
ULB input fifo with n*[colour enable data]
n = (Xmax-Xmin+1)*(Ymax-Ymin+1)/32

Target:
Rectangular area of pixels between start
and end point in selected layer in Video
RAM. Background pixels are written only
if BGCOL_EN = ’1’.

Note:
Only the relevant bits of BGCOL and
FGCOL register are used (depends on the
colour depth).

XYMAX
XYMIN
FGCOL
BGCOL_EN
BGCOL_COL
PPCMD_LAY
PPCMD_EN
PPCMD_DIR
PPCMD_MIR

IFIFO

Table 3-1: Command List

Mnemonic Code Device Function Registers
Command Description Page 325

MB87J2120, MB87P2020-A Hardware Manual
PutTxtCP 06h PE Store compressed pixel data with fixed
foreground or background colour into
Video RAM (finite command).

Source:
ULB input fifo with n*[coded colour ena-
ble data], n depends on compression factor

Target:
Rectangular area of pixels between start
and end point in selected layer in Video
RAM. Background pixels are written only
if BGCOL_EN = ’1’.

Note:
Only the relevant bits of BGCOL and
FGCOL register are used (depends on the
colour depth).

XYMAX
XYMIN
FGCOL
BGCOL_EN
BGCOL_COL
PPCMD_LAY
PPCMD_EN
PPCMD_DIR
PPCMD_MIR

IFIFO

PutPixel 07h MAU Transfer single pixel data into Video RAM
(infinite command).

Source:
IFIFO with address/data pairs.
n*([L,X,Y], [single colour data]),
n = number of pixels

Target:
Addressed pixel in Video RAM.

Note:
IFIFO: LSB aligned pixel data, however
physical data in Video RAM is MSB
aligned

PPCMD_EN

IFIFO

PutPxWd 08h MAU Transfer packetized pixel in data words
(pixel bursts) into Video RAM (infinite
command).

Source:
IFIFO with n*([L,X,Y],[data word])
n = number of packet words

Target:
Successive pixels in Video RAM on
addressed position.

Note:
The number of pixels in the 32-bit word
depends on colour depth/layer. In Opposi-
tion to PutPixel command IFIFO data is
directly in Video RAM format. Especially
for 24 bit colour depht IFIFO data is MSB
aligned in this case.

PPCMD_EN

IFIFO

Table 3-1: Command List

Mnemonic Code Device Function Registers
Page 326

Command Description
PutPxFC 09h MAU Set fixed coloured pixels in Video RAM at
appropriate adresses (infinite command).
Colour is defined by PIXCOL register.

Source:
IFIFO with pixel adresses
n*([L,X,Y]), n = number of pixels

Target:
Addressed pixels in Video RAM.

Note:
Only the relevant bits of PIXCOL register
are used (depends on the colour depth).

PIXCOL
PPCMD_EN

IFIFO

GetPixel 0Ah MAU Read pixel data from Video RAM (infinite
command).

Source:
IFIFO with pixel addresses,
n*([L,X,Y]), n = number of pixels.
Video RAM with pixel data from pixel
address.

Target:
OFIFO, n*([single colour data]).

IFIFO

OFIFO

XChPixel 0Bh MAU Transfer single pixel data into Video RAM
and read the old value from Video RAM
(infinite command).

Source:
IFIFO with pixel address/data pairs,
n*([L,X,Y],[single colour data]),
n = number of pixels.
Old pixel data from Video RAM.

Target:
Video RAM for new pixel from IFIFO.
OFIFO for old pixel from Video RAM.

IFIFO

OFIFO

Table 3-1: Command List

Mnemonic Code Device Function Registers
Command Description Page 327

MB87J2120, MB87P2020-A Hardware Manual
MemCP 0Ch MCP Copy rectangular region from Video RAM
to Video RAM (infinite command).

Source:
Video RAM area defined by start point
[Ls,Xs,Ys] and end point [Xe,Ye].
IFIFO control parameter:
n*([Ls,Xs,Ys], [Xe,Ye], [Lt,Xt,Yt]),
n = number of rectangular areas to copy

Target:
VideoRam area with start point [Lt,Xt,Yt]
of same size as source area.

Note:
Layer information of source end point is
ignored in pixel address. There is no end
point of target area to specify.
Source and target layer should have same
colour depth. If mismatch detected, the
error flag FLNOM_EBPP is activated.

IFIFO

PutPA 0Dh IPA Store data in Video RAM physically with
address auto-increment (infinite com-
mand).

Source:
IFIFO with ([physical address], n*[physi-
cal data]).

Target:
Video RAM on physical address and suc-
ceeding. Physical address means there is no
direct point relation.

IFIFO

GetPA 0Eh IPA Load data from Video RAM with address
auto-increment, stop after CMD_PAR
words.

Source:
IFIFO with [physical address]
Video RAM address starting at physical
address and succeeding words. Number of
words given by CMD_PAR.

Target:
Physical data in OFIFO.

CMD_PAR

IFIFO

OFIFO

Table 3-1: Command List

Mnemonic Code Device Function Registers
Page 328

Command Description
Legend, symbols from command list table:

• physical byte address

Note: Depending on video memory size not all addresses are used.

• data word

• single colour data (LSB aligned)

bpp...24, 16, 8, 4, 2, 1 Bit

• colour data

bpp...24, 16, 8, 4, 2, 1 Bit
n...count of pixel per word
bpp n

DwPoly 0Fh PE Draw polygon lines. Calculated pixel are
stored in Video RAM (infinite command).

Source:
IFIFO with start and next points of a poly-
gon ([Xs,Ys], n*[Ln,Xn,Yn]).
n = number of polygon lines.
Each ’next’ point is the start point of the
next polygon line.

Target:
Polygon pixels in Video RAM.

Note:
Drawing of more than one polygon on dif-
ferent layers with one DwPoly command is
possible by changing layer of next point.
The colour of the polygon can’t change in
same command cycle.
Only the relevant bits of PLCOL register
are used (depends on colour depth).

PLCOL
PPCMD_LAY
PPCMD_ULAY
PPCMD_EN

IFIFO

NoOp FFh ULB No operation. Dummy cycle for command
controller.

-

a.SDC, GPU, VIC, SPB, CCFL did not react on SwReset.

Table 3-1: Command List

Mnemonic Code Device Function Registers

31 0

31

Byte 1Byte 0 Byte 2 Byte 3

0

0bpp-1

031 31-(bpp-1)
...P0

bpp-1

P(n-1)
Command Description Page 329

MB87J2120, MB87P2020-A Hardware Manual

mpty

l buffer
write
s pro-
not

lling
24 1 *
16 2
8 4
4 8
2 16
1 32

* In case of 24 bpp colour data is packet over word boundaries. There are no lower bits left e
and first pixel is MSB aligned on the 32-bit word grid.

• colour enable data

(...) Source or Target FIFO data
[...]n Deliver data in ‘[...]’ n times
[...]+ Deliver data in ‘[...]’ at least one time

• {L,X,Y} Pixel coordinates, point definition

If L is not stated i.e. in {X,Y} form, information in bits 31, 30, 15, 14 kept as don’t care.

3.2 Command and I/O Control

Command queue consits of two registers, an internal actual processed command and an additiona
for the next planned command. Before writing to command register the FLNOM_CWEN (command
enable) flag polling is required to ensure that the new command can be written. All execution device
vide ready or busy information via FLNOM flag register. Normally this dedicated device information is
needed to evaluate. Command controller takes care on operation.

Also the IFIFO and OFIFO has its status flags in FLNOM. These are usable for I/O flow control by po
or interrupt. Additional DMA support is possible to transfer data from/to the FIFOs.

031
...P0 P31

31 0131529

Layer (to be ignored if layer register exists)

0123

x coordinate y coordinate
Page 330

D-2 Hints and restrictions for Laven-
der and Jasmine
Page 331

MB87J2120, MB87P2020-A Hardware Manual
Page 332

Hints and Restrictions

r by
e) and
ta pair

ng

th
vender.

DMA

at
1 Special hints

1.1 IPA resistance against wrong settings

Invalid settings for minimum transfer block sizes lead to IPA deadlock from which it can only recove
reset. At minimum a value of 1 has to be given for the output FIFO (block size of zero makes no sens
a minimum value of 2 for the input FIFO should be setup. Input FIFO needs at least one address/da
for IPA.

Table 1-1 gives an overview and a classification about the described problem.

1.2 ULB_DREQ pin timing to host MCU

ULB_DREQ reaction time is critical if only one wait state for User Logic Bus (ULB) cycle is set up. Writi
per DMA ‘demand mode’ can lead to additional transferred data afterULB_DREQ tied low. Jasmine can
handle this additional data by an two words deep overflow buffer. Thus no data will be lost.
For Lavender the count of waitstates can be set equal or greater than two.

Writing to input FIFO in DMA block/step/burst mode and reading from output FIFO with DMA (bo
block/step/burst and demand mode) transfers correct amount of data in any case for Jasmine and La

A detailed description about this topic can be found in hardware manual (chapter B-2.1.7) and in a
application note.

Table 1-2 gives an overview and a classification about the described problem.

Table 1-1: Overview for IPA resistance

Subject Description

Description Smaller block sizes does not make sense since a block should contain
least one word.
Input FIFO contains address and at least one data word.
Output FIFO contains at least one data word.

Classification Hint

Effects without
workaround

The system may hang with wrong settings.
Do not use forbidden settings.
Escape only with HW-Reset.

Solution/Workaround No workaround required.

Concerned devices MB87J2120 (Lavender)
MB87P2020 (Jasmine)
fixed for MB87P2020-A (Jasmine redesign)

Testcase EMDC: IPA.1 and SDC.3
(Limits can be set in ’mkctrl’.)

Table 1-2: Overview for ULB_DREQ timing

Subject Description

Description Reaction time forULB_DREQ pin for write accesses is critical if one wait-
state is set up.

Classification Hint
Special hints Page 333

MB87J2120, MB87P2020-A Hardware Manual

set,

Rect

er reg-
man-
1.3 CLKPDR master reset

CLKPDR, bit[15] is write only. Read access returns always ‘0’. Writing ‘1’ initiates global master re
writing a ‘0’ releases master reset.

Table 1-3 gives an overview and a classification about the described problem.

1.4 MAU (Memory Access Unit) commands

For Lavender drawing commands (PutPixel, PutPxWd, PutPxFC, GetPixel, XChPixel, DwLine, Dw
and DwPoly) the target layer has to be always included into data stream (pixel addresses).

For Jasmine only commands PutPixel, PutPxWd, PutPxFC, GetPixel and XChPixel can’t use the lay
ister PPCMD_LAY while the other drawing commands can use it. MAU has its own dedicated layer

agement and could not have benefit from the enhancement.1

Effects without
workaround

One data word more than expected can be delivered by MCU.

Solution/Workaround For MB87P2020 (Jasmine) a hardware solution is already implemented
with a two word overflow buffer.
For MB87J2120 (Lavender) the count of waitstates during DMA transfer
should be set equal or larger than two.

Concerned devices MB87J2120 (Lavender)
fixed for MB87P2020 (Jasmine)
fixed for MB87P2020-A (Jasmine redesign)

Testcase EMDC: ULB.5

Table 1-3: Overview for master reset

Subject Description

Description The reset status can not read back.

Classification Hint

Effects without
workaround

CLKPDR_MRST is write only. Reading always return ’0’.

Solution/Workaround If the reset status has to be memorized it has to be done externally.
Normally this sequence should reset Jasmine/Lavender safely:
G0CLKPDR_MRST=1;
G0CLKPDR_MRST=0;

Concerned devices MB87J2120 (Lavender)
MB87P2020 (Jasmine)
MB87P2020-A (Jasmine redesign)

Testcase EMDC: CTRL.1 (I/O march)

1. The target layer register PPCMD_LAY can be used for pixel engine commands if PPCMD_ULAY is set to
’1’.

Table 1-2: Overview for ULB_DREQ timing

Subject Description
Page 334

Hints and Restrictions

t up to

com-

f con-
e time

gister

as to
he risk
incon-

alue is
A good workaround is to configure Layer 0 with the same parameters as the target layer1 and make all draw-
ings to layer 0. The advantage is that no layer number has to be merged into pixel addresses.
After drawing access to the layer data is possible via target layer configuration. Also GPU can be se
target layer.

Table 1-4 gives an overview and a classification about the described problem.

1.5 Pixel Processor (PP) double buffering

The Pixel Processor contains a double buffering mechanism for its registers which is synchronized to
mand execution.
Data are always written to configuration register which is not used for command execution. Instead o
figuration register directly an internal register is used for data storing during command execution. Th
to write internal register is determined by hardware.
For reading from PP registers an application can choose whether to read from configuration re
(READINIT_RCR=1) or to read from internal register (READINIT_RCR=0).

For bitwise modification of pixel processor configuration registers the double buffering mechanism h
be considered. If parts of the registers should be changed with read-modify-write operations there is t
to read from internal double buffered register and write the result to the external register back. Data
sistency could be the result. It is recommended to initializeREADINIT_RCR=1 to have read access to the
external registers too (same register is accessed for reading and writing). Note that the reset v
READINIT_RCR=0 and has not the recommended value.

Table 1-5 gives an overview and a classification about the described problem.

1. In this case layer 0 is a temporary layer only; it should not be used for normal drawings.

Table 1-4: Overview for MAU commands

Subject Description

Description For Jasmine target layer register (PPCMD_LAY) is ignored for MAU com-
mands even ifPPCMD_ULAY is set to ’1’.

Classification Hint

Effects without
workaround

Commands PutPixel, PutPxWd, PutPxFC, GetPixel and XChPixel uses
only the target layer delivered in input FIFO.
See command list for a detailed command syntax description.

Solution/Workaround Use Layer 0 as a temporary drawing layer (see description for further
details).

Concerned devices MB87J2120 (Lavender)
partly fixed for MB87P2020 (Jasmine)
partly fixed for MB87P2020-A (Jasmine redesign)

Testcase EMDC: SDC.LOG2PHY

Table 1-5: Overview for PP double buffering

Subject Description

Description Application note for READINT register and its consequences.

Classification Hint
Special hints Page 335

MB87J2120, MB87P2020-A Hardware Manual

state
com-

_CS,

RAM

evice.
not
1.6 Robustness of ULB_RDY signal

Disturbances at external bus interface (ULB interface) can cause the ULB_RDY pin to stay in active
(logic ’0’) during a bus read access. This stops a MB91360 series MCU completely so that no further
mands will be executed (blocking of external bus). Only a MCU watchdog can reset the system.

To avoid this problem the PCB layout should be done very carefully especially for the signals ULB
ULB_RDX and ULB_WRX[3:0]. The following hints may help:

• Place MCU and Lavender as close as possible together on PCB.

• Use separate ground plane on PCB in order to avoid interferences with other signals.

• Place SDRAM and Lavender as close as possible together in order to avoid interferences from SD
interface to ULB interface

The interface circuit has been redesigned for Jasmine so that this problem should not occur with this d
Additionally for Jasmine an ULB_RDY timeout has been added so that a ’hanging’ ULB_RDY can
block the hole system. See hardware manual for further details.

Table 1-6 gives an overview and a classification about the described problem.

Effects without
workaround

READINIT_RCR=0: read internal register (reset value)
READINIT_RCR=1: read configuration register
Be careful with Read-Modify-Write accesses; useREADINIT_RCR=1 in
this case.

Solution/Workaround No workaround required.

Concerned devices MB87J2120 (Lavender)
MB87P2020 (Jasmine)
MB87P2020-A (Jasmine redesign)

Testcase EMDC: SDC.LOG2PHY

Table 1-6: Overview for ULB_RDY robustness

Subject Description

Description ULB_RDY signal may hang as a result of signal distortions on PCB.

Classification Hint

Effects without
workaround

A hanging ULB_RDY pin blocks the command execution of a MB91360
series MCU.

Solution/Workaround Keep special attention to PCB layout.
This problem should not occur with Jasmine. Additionally a timeout for
ULB_RDY has been added.

Concerned devices MB87J2120 (Lavender)
fixed for MB87P2020 (Jasmine)
fixed for MB87P2020-A (Jasmine redesign)

Testcase Every testcase.

Table 1-5: Overview for PP double buffering

Subject Description
Page 336

Hints and Restrictions

when

itten
eline

ected
ould

n ULB

If at
ftware

ng pre-

ld be
to the

t cause
w syn-

rds to
A.

oller

’

-

za-
1.7 Robustness of command pipeline against software errors

As described in detail in hardware manual a command should only be written to Lavender/Jasmine
the flag FLNOM_CWEN is ’1’.
If this rule is followed the command execution of Lavender works correctly but if a command is wr
although the FLNOM_CWEN flag is ’0’ the command execution of Lavender may hang (command pip
overflow). Only a hardware reset can solve this situation.
In case of a command pipeline overflow the command dataflow via FIFOs is not automatically corr
but the application can detect a command pipeline overflow with help of the flag FLNOM_EOV and sh
perform corrective actions.

Please note that not only wrong written software can cause this problem but also signal distortions o
data bus (ULB_D).
Normally an application polls the FLNOM_CWEN flag so it may be read many times inside a loop.
one of these read accesses this flag changes its value from ’0’ to ’1’ due to PCB disturbances the so
stops polling and sends a new command to the graphic controller. Lavender has not finished executi
vious command and a command pipeline overflow occurs.
To avoid this communication problem between MCU and Lavender signal distortions on ULB_D shou
reduced by improving PCB layout as already described in chapter 1.6. Please note that additionally
signals described in chapter 1.6 the ULB data bus (ULB_D) is also a critical signal for PCB layout.

The command controller for Jasmine has been redesigned and a command pipeline overflow can no
the command execution to hang. But the application has still to take care about the command dataflo
chronization as described above.

Table 1-7 gives an overview and a classification about the described problem.

1.8 DMA resistance against wrong settings

In DMA demand mode the DMA controller inside Lavender/Jasmine counts the amount of data wo
be transferred. See hardware manual chapter B-2.1.7 (ULB description) for more details about DM

If the amount of data to be transferred in DMA demand mode is equal to ’0’ the Lavender DMA contr

may hang. The data amount of ’0’ can be calculated1 if:

• IFDMA_LL is set to max. input FIFO size (128 for Lavender) for DMA to input FIFO

Table 1-7: Overview for command pipeline robustness

Subject Description

Description If a command is written to Lavender while the flag FLNOM_CWEN is ’0
the command pipeline may hang. This can be watched with FLNOM_EOV
flag.

Classification Hint

Effects without
workaround

The command controller does not work properly after sending a new com
mand while FLNOM_CWEN = ’0’. Only a hardware reset can solve this
situation.
For Jasmine no hang-up can occur but the command<-> data synchroni
tion can be disturbed.

Solution/Workaround Write only commands to Lavender when FLNOM_CWEN is ’1’. Keep
special attention to PCB layout for ULB data bus (ULB_D).

Concerned devices MB87J2120 (Lavender)
fixed for MB87P2020 (Jasmine)
fixed for MB87P2020-A (Jasmine redesign)

Testcase Every testcase with command execution.
Special hints Page 337

MB87J2120, MB87P2020-A Hardware Manual
• OFDMA_UL is set to ’0’ for DMA from output FIFO.

In order to avoid this problem the described settings are forbidden for Lavender.

This problem has been solved for Jasmine.

Table 1-8 gives an overview and a classification about the described problem.

1. For calculation of data amount not the programmed limits are used but the current FIFO load. Therefore the
data amount is not necessarily ’0’ if the described settings are applied.

Table 1-8: Overview for DMA resistance against wrong settings

Subject Description

Description The DMA controller for Lavender may hang if transfer size in DMA
demand mode is equal to ’0’.

Classification Hint

Effects without
workaround

No DMA transfer is started even if the start condition is meta.

a. Start condition for input FIFO is: FIFO load <= IFDMA_LL; for output FIFO: FIFO load >= OFDMA_UL.

Solution/Workaround Avoid critical settings IFDMA_LL = 128 and OFDMA_UL = 0.
For Jasmine this problem has been fixed.

Concerned devices MB87J2120 (Lavender)
fixed for MB87P2020 (Jasmine)
fixed for MB87P2020-A (Jasmine redesign)

Testcase EMDC: ULB.5 and ULB.13
Page 338

Hints and Restrictions

te pin-

neg-

d with

onal.

hown
2 Restrictions

2.1 ESD characteristics for I/O buffers

Table 2-1 shows the ESD characteristics for all I/O buffers for Lavender and Jasmine. For a comple
ning table see hardware manual.

(A) Listed values are determined by using theHuman Body Model(C=100pF, R=1.5k ohm). The test pro-
cedure is described in MIL-STD-883.

(B) The worst values among the four conditions (VDD positive, VDD negative, VSS positive, and VSS
ative) are shown.

(C) The pass/fail criteria of 1uA leakage current was used for all the I/Os except for the I/Os describe
„Leak mode“.

(D) In the case of „Leak mode“, the leakage current will increase but the I/Os will continue to be functi

(E) The I/Os marked with „Destruction mode“, however, may be destroyed if the higher voltage than s
in the table is applied. Once they are destroyed, they may become non-functional.

Table 2-1: ESD performance for buffer types

Buffer Type Description
ESD performance of

MB87P2020

B3NNLMX
Bidirectional True buffer (3.3V
CMOS, IOL=4mA,Low Noise
type)

+/-500V, Destruction mode

B3NNNMX
Bidirectional True buffer (3.3V
CMOS, IOL=4mA)

+/-500V, Destruction mode

BFNNQHX
Bidirectional True buffer (5V
Tolerant, IOL=8mA, High
speed type)

+/-2000V, Leak mode

BFNNQLX
Bidirectional True buffer (5V
Tolerant, IOL=2mA, High
speed type)

+/-2000V, Leak mode

BFNNQMX
5V tolerant, bidirectional true
buffer 3.3V CMOS, IOL/
IOH=4mA

+/-2000V, Leak mode

IPBIX

Input True Buffer for DRAM
TEST (2.5V CMOS with 25K
Pull-up)
(SDRAM test only)

+/-2000V

ITAMX Analog Input buffer +/-2000V

ITAVDX Analog Power Supply N.A.

ITAVSX Analog GND N.A.

ITBSTX

Input True Buffer for DRAM
TEST (2.5V CMOS with 25K
Pull-down)
(SDRAM test only)

+/-2000V

ITCHX Input True buffer (2.5V CMOS) +/-2000V
Restrictions Page 339

MB87J2120, MB87P2020-A Hardware Manual

t if
Table 2-2 gives an overview and a classification about the ESD characteristics.

ITFHX 5V tolerant 3.3V CMOS Input +/-2000V, Leak mode

ITFUHX
5V tolerant 3.3V CMOS Input,
25 k Pull-up

+/-2000V, Leak mode

ITTSTX
Input True buffer for DRAM
TEST Control (2.5V CMOS
with 25K Pull-down)

+/-2000V

OTAMX Analog Output +/-2000V

OTAVX Analog Output buffer +/-2000V

OTFTQMX
5 V tolerant 3.3V tri-state out-
put, IOL/IOH=4mA

+/-2000V, Leak mode

VPDX
3.3V CMOS input, disable input
for Pull up/down resistors, con-
nect to GND

+/-2000V

YB002AAX Oscillator Output +/-500V, Destruction mode

YB3DNLMX

Bidirectional True buffer (3.3V
CMOS, 25K Pull-down,
IOL=4mA,Low Noise
type)

+/- 500V, Destruction mode

YB3NNLMX
Bidirectional True buffer (3.3V
CMOS, IOL=4mA,Low Noise
type)

+/- 500V, Destruction mode

YI002AEX Oscillator Pin Input +/-2000V

Table 2-2: Overview for ESD characteristics

Subject Description

Description Some I/O buffer show a weak ESD performance (see table 2-1).

Classification HW limitation

Effects without
workaround

Affected buffers may be destroyed or may have a higher leakage curren
a voltage higher than specified in table 2-1 is applied to the buffer.

Solution/Workaround No workaround possible.

Concerned devices MB87J2120 (Lavender)
MB87P2020 (Jasmine)
fixed for MB87P2020-A (Jasmine redesign)

Testcase EMDC: ULB.5 and ULB.13

Table 2-1: ESD performance for buffer types

Buffer Type Description
ESD performance of

MB87P2020
Page 340

Hints and Restrictions

hile the
rved for

oid this

ender.
espect

isplay

N is

clock
. With
t (CU))

n

r

ng
2.2 Command FSM

During emulation for Jasmine development a hang-up of the command FSM has been observed w
commands GetPA and NoOp have been executed within a loop. This hang-up has never been obse
Lavender.
Based on this emulation result the command FSM for Jasmine has been redesigned in order to av
problem in the future.

At the present time it can not securely excluded that the timing gap problem is NOT present on Lav
Therefore further investigation and verification is necessary to check the Lavender behaviour with r
to this problem.

Table 2-3 gives an overview and a classification about the described problem.

2.3 GPU mastertiming synchronization

For Lavender the internal GPU mastertiming signal (master switch for GPU) is not synchronized to d
clock domain (output pixel clock) properly.
If the pixel clock runs asynchronous to core clock (e.g. external pixel clock) and the flag MTIMON_O
switched on display output may hang afterwards.

In order to avoid this problem no asynchronous display clock should be used. Asynchronous display
can either be an external display clock or an internal clock derived from another clock than core clock
other words core and display clock should have the same clock source. See chapter B-1 (Clock Uni
description in hardware manual for further details about Lavender’s clock concept.

For Jasmine this problem is solved.

Table 2-4 gives an overview and a classification about the described problem.

Table 2-3: Overview for timing gap problem

Subject Description

Description A command FSM hang up has been observed for an intermediate versioa

of Jasmine.

a. The term ’intermediate’ means a RTL version between Lavender and Jasmine.

Classification HW limitation

Effects without
workaround

The command execution is stopped at next command. Only a hardware
reset can terminate this state.

Solution/Workaround For Jasmine this problem is fixed.
For Lavender it is not clear whether this problem occurs. Therefore furthe
investigation is necessary.

Concerned devices MB87J2120 (Lavender)
fixed for MB87P2020 (Jasmine)
fixed for MB87P2020-A (Jasmine redesign)

Testcase EMDC: ULB.1

Table 2-4: Overview for GPU mastertiming

Subject Description

Description If an asynchronous display clock (compared to core clock) is used, turni
on/off the GPU with help of MTIMON_ON can cause the display output to
hang.
Restrictions Page 341

MB87J2120, MB87P2020-A Hardware Manual

ode
ac-

egis-
affect a
sub-
gives

revious
ed MCU
ters.

ord ad-
s from
n offset
ad se-

c-

 dis-
2.4 Read limitation for 16 Bit data interface to MCU

The User Logic Bus interface of MB87J2120 to MB91xxxx MCUs has read limitations in 16Bit data m
(Pin MODE[2]=0). Read access in 32-Bit data mode (Pin MODE[2]=1) is fully functional as also write
cesses in all modes and access types. Writing to registers works with all modes properly.

This read limitation affects only half word (16 Bit) and byte (8 Bit) read access to Lavender internal r
ters (address range 0x0000-0xFBFF) in register space and direct SDRAM read access. It does not
word (32 Bit) read access. In this case the MCU splits the word into two half words (16 Bit) which are
mitted sequentially. For this transmission the order has to be MSB first (Big Endian format). Table 2-5
an overview on all possible modes and read access types.

An access to address offset 2 or 3 may lead to delivery of wrong values, depending on address of p
read access.Figure 2-1 shows these offsets relative to a given address (addr0, addr1) in byte address
memory space. The right part of the figure shows the mapping from this memory to internal 32 Bit regis

There is a possible work-around because reading from an address with offset 0 or 1 to an aligned w
dress (divisible by 4) is fully operable. After the access to an address with offset 0 or 1, read acces
offset 2 or 3 is possible and delivers correct data. If not otherwise guaranteed, a dummy read access o
0 or 1 should be included before reading from offset 2 or 3 in order to prepare the correct internal re

quence and deliver correct values also for offsets 2 and 3.1 Alternative to the described procedure read a
cesses can be limited to 32-Bit accesses only (see table 2-5).

Classification HW limitation

Effects without
workaround

A wrong output picture is visible. Only a hardware reset can solve this
problem.

Solution/Workaround No asynchronous display clock should be used for Lavender. Core and

play clock should have the same clock sourcea.
For Jasmine this problem is solved.

Concerned devices MB87J2120 (Lavender)
fixed for MB87P2020 (Jasmine)
fixed for MB87P2020-A (Jasmine redesign)

Testcase EMDC: GPU-P10

a. As common input clock the pins OSC_IN, ULB_CLK, DIS_PIXCLK or RCLK/MODE[3] can be used.

Table 2-5: Overview for read accesses in different modes

Read access

Mode

Word access
(32Bit)

Halfword access
(16Bit)

Byte access
(8Bit)

32Bit mode read
 (MODE[2]=1)

supported supported supported

16Bit mode read
(MODE[2]=0)

supporteda

a. since MCU delivers data in Big Endian order (MSB first).

not supported for
offset 2

not supported for
offset 2 and 3

1. Make sure that this sequence is not interrupted by other read accesses (for instance by an interrupt request
with flag read access).

Table 2-4: Overview for GPU mastertiming

Subject Description
Page 342

Hints and Restrictions

ffset 2
Bit

-

In C-API the described workaround is already implemented. Within API read accesses from address o
and 3 are limited to registersFLNOM_IFF andFLNOM_OFE. These accesses are implemented as 32-
read accesses.

Table 2-6 gives an overview and a classification about the described problem.

Table 2-6: Overview for read limitation in 16Bit data mode

Subject Description

Description Read access from addr0+2 or addr0+3 does not work reliable.

Classification HW limitation

Effects without
workaround

Halfword and byte read access from addr0+2 or addr0+3 may deliver
wrong values in 16Bit data mode (MODE[2]=0).

Solution/Workaround Read data from addr0+0 or addr0+1 before reading from addr0+2 or
addr0+3.
OR
Limit read accesses to 32Bit read accesses only.
All C-API functions which have to read back values implement this worka
round already.

Concerned devices MB87J2120 (Lavender)
MB87P2020 (Jasmine)
MB87P2020-A (Jasmine redesign)

Testcase EMDC: CTRL.1 (I/O march) and IPA.1 in 16Bit data mode.

+2

+0

+1

+3

+0

+1

Byte 0 Byte 3

31 0

Byte 2Byte 1

07

.......

addr0

addr1

Figure 2-1: Address offsets in byte addressed memory and its mapping to Jasmine/Lavender in-
ternal registers
Restrictions Page 343

MB87J2120, MB87P2020-A Hardware Manual

e se-
ly not

tions for
AM

no re-

ta

ta

M

g

2.5 SDC sequencer readback

For Lavender the SDC sequencer is not readable in 16bit data mode (pin MODE[2]=0). Normally th
quencer data will only be written once at initialization time. A readback of sequencer data is usual
necessary.

This problem has been fixed for Jasmine.

Table 2-7 gives an overview and a classification about the described problem.

2.6 Direct SDRAM access with 16bit and 8bit data mode

Lavender and Jasmine can perform a memory mapped SDRAM access (see hardware manual sec
ULB and DIPA for further details). In the case of 16bit (halfword) or 8bit (byte) read access from SDR
wrong read data may be delivered for some addresses for Lavender.
Direct SDRAM write access works for all data sizes (32,16 and 8bit).

To avoid this problem 32bit (word) access should always be used for SDRAM read access. There is

striction for read access from register space1.

For Jasmine this problem is solved and every data size can be used for reading from SDRAM.

Table 2-8 gives an overview and a classification about the described problem.

Table 2-7: Overview for SDC sequencer readback

Subject Description

Description The SDC sequencer can not be read back in 16bit data mode.

Classification HW limitation

Effects without
workaround

Lavender delivers wrong data when the SDC sequencer is read in 16bit da
mode.

Solution/Workaround None.
This problem has been fixed for Jasmine.

Concerned devices MB87J2120 (Lavender)
fixed for MB87P2020 (Jasmine)
fixed for MB87P2020-A (Jasmine redesign)

Testcase EMDC: CTRL.1 (I/O march)

1. The GDC address space is divided into register and SDRAM space. See chapter B-2.1.4 in hardware manual
for further details.

Table 2-8: Overview for direct SDRAM access with 16bit and 8bit data mode

Subject Description

Description Read access from SDRAM space with 16bit (halfword) and 8bit (byte) da
size may deliver wrong values for some addresses.

Classification HW limitation

Effects without
workaround

The MCU reads wrong data from an address mapped to Lavender SDRA
space when reading a 16bit (halfword) or 8bit (byte) value.
Reading a 32bit (word) value from SDRAM space works as well as readin
from register space.
Page 344

Hints and Restrictions

cking

ac-
CU.

at no

sk
2.7 Input FIFO read in 16bit mode

One hidden feature of Lavender and Jasmine is the reading from input FIFO1. Normally reading from input
FIFO makes no sense and is therefore not officially supported but it may be the reason for a MCU blo
which can occur when reading from this address is performed by accident.

In 16bit data mode (Pin MODE[2]=0) reading from input FIFO can cause the ULB_RDY pin to stay in
tive state (logic ’0’). As already described in chapter 1.6 this can block the command execution of M
To avoid this problem reading from input FIFO should not be used in 16bit data mode.

This problem occurs on both GDC devices but for Jasmine the ULB_RDY timeout can be set so th
system blocking can occur.

Table 2-9 gives an overview and a classification about the described problem.

2.8 ULB_DSTP pin function

ULB_DSTP output of Lavender/Jasmine must not be used because it can not be guaranteed thatULB_DSTP

signal is always generated at DMA interruption by SW-Reset or falling edge of DMAFLAG_EN2. It is rec-

Solution/Workaround Always read 32bit (word) values from Lavender SDRAM space and ma
the data afterwards if necessary.
For Jasmine this problem is solved.

Concerned devices MB87J2120 (Lavender)
fixed for MB87P2020 (Jasmine)
fixed for MB87P2020-A (Jasmine redesign)

Testcase EMDC: SDC.3 and DPA.1

1. The read value is the current FIFO output value which will be delivered to Pixel Processor (PP) with next
FIFO read access. Note that the PP reads with core clock data from input FIFO while MCU reading can only
be performed with ULB clock. Because ULB clock is always slower (or at most equal) than core clock not all
FIFO output data can be sampled.

Table 2-9: Overview for input FIFO read access in 16bit data mode

Subject Description

Description Reading from input FIFO in 16bit data mode causes ULB_RDY = 0.

Classification HW limitation

Effects without
workaround

The hanging ULB_RDY signal blocks the command execution of a
MB91360 series MCU.

Solution/Workaround Do not read from input FIFO (address 0x0004) in 16bit data mode.
For Jasmine the ULB_RDY timeout can be activated.

Concerned devices MB87J2120 (Lavender)
MB87P2020 (Jasmine)
MB87P2020-A (Jasmine redesign)

Testcase EMDC: CTRL.1 (I/O march)

2. See ULB specification in hardware manual for further details.

Table 2-8: Overview for direct SDRAM access with 16bit and 8bit data mode

Subject Description
Restrictions Page 345

MB87J2120, MB87P2020-A Hardware Manual

-

quence

.

ommended to disable/interrupt MCU-DMAC directly. See table 2-10 for a reset sequence example.
The reset of MCU-DMAC is already included in C-API functionULB_DMA_HDG.

In case of direct MCU resetDMAFLAG_DSTP should be set to ‘0’ in order to avoid unintentional interrup
tion. With this setting noULB_DSTP impulse is generated by the graphic controller.

TheULB_DSTP pin must not be used; it will not be supported any longer.

Table 2-10 gives an overview and a classification about the described problem.

2.9 Software Reset for command execution

For Jasmine the SwReset command does not reset parts of command controller correctly. As a conse
the following commands are not executed properly. They may be finished too early.
Lavender does not have this problem due to a different command controller structure.

As workaround a NoOp can be executed after SwReset. This is already included into C-API.

Table 2-11 gives an overview and a classification about the described problem.

Table 2-10: Overview for DSTP function

Subject Description

Description ULB_DSTP signal is sometimes not generated.

Classification HW limitation

Effects without
workaround

MCU DMA-Controller is not reset correctly. Additional data may be sent
after SWReset or DMA turn off.

Solution/Workaround ULB_DSTP signal must not be used. Instead turn off MCU DMA-Control-
ler before sendingSWReset to Jasmine/Lavender or disable DMA via
DMAFLAG_EN.
MCU-DMAC reset sequence:
1.) DMACA[30] = 0
2.) DMACA[31] = 0
GDC-API functionULB_DMA_HDG takes care of this issue.

Concerned devices MB87J2120 (Lavender)
MB87P2020 (Jasmine)
MB87P2020-A (Jasmine redesign)

Testcase EMDC: ULB.5 and ULB.13

Table 2-11: Overview for Software Reset (incomplete reset)

Subject Description

Description Parts of Command Controller will not be reset with SWReset command

Classification HW limitation

Effects without
workaround

After SWReset next command may not be executed properly.

Solution/Workaround Send a NoOp command after SWReset command.
The NoOp command is already included in API function
’GDC_CMD_SwRs’.

Concerned devices not present for MB87J2120 (Lavender)
MB87P2020 (Jasmine)
MB87P2020-A (Jasmine redesign)
Page 346

Hints and Restrictions

}] can

d pixel

n that

lated.
ards)

ng

to

-

In case of software reset and anti aliasing (AAF) enabled, data for logical address [Layer 0, Pixel {0,0
be destroyed.
The SwReset command is executed by AAF despite a pending SDRAM access. Therefore layer an
address is reset which causes a wrong address for SDRAM access.

For this restriction two possible workarounds exist which are described in table 2-12.

Table 2-12 gives an overview and a classification about the described problem.

2.10 AAF settings double buffering

The command synchronization for AAF settings (register: PPCMD) works not properly. It can happe
the currently executed command uses the settings from previous command.

In order to avoid this problem a NoOp command should be inserted before AAF settings are manipu
A sequence for a drawing command with AAF (turn on before command execution and turn off afterw
looks as follows:
 GDC_CMD_NOP();

 G0PPCMD_EN = 1; // AAF enable

 G0AAOE = ..; // AAF init

 GDC_CMD_Dw...; // Drawing command

 GDC_CMD_NOP();

 G0PPCMD_EN = 0; // AAF disable

Testcase EMDC: ULB.1, ULB.2 and SDC.6

Table 2-12: Overview for Software Reset (AAF)

Subject Description

Description If AAF is enabled SwReset command causes an AAF reset without waiti
for SDC.

Classification HW limitation

Effects without
workaround

If AAF is enabled data for [Layer 0, Pixel {0,0}] can be destroyed.

Solution/Workaround Workaround 1:

• Do not display [Layer 0, Pixel {0,0}] (either do not use entire layer or do
not use Row 0 and Column 0 for layer 0)

Workaround 2:

• Save physical word at start address of layer 0. This word contains
Pixel {0,0}. Physical access does not need command control.

• Optional: Disable MCU interrupts and wait for GPU frame sync in order
to avoid visible effects on display.

• Send command SwReset (including a NoOp according to table 2-11)
Jasmine/Lavender

• Restore physical word at start address of layer 0. Pixel {0,0} will be re
stored in this way.

Concerned devices MB87J2120 (Lavender)
MB87P2020 (Jasmine)
MB87P2020-A (Jasmine redesign)

Testcase Code review

Table 2-11: Overview for Software Reset (incomplete reset)

Subject Description
Restrictions Page 347

MB87J2120, MB87P2020-A Hardware Manual

turn

C-API
AF.
estore
ns of
are ap-

mory.
back-

r
This is

ed the
pped
ils.

P();
mands

-

l

Please note that the C-API functions already include the necessary flag polling of FLNOM_CWEN.
The C-API function ’PXP_AAF’ implements the described workaround already and should be used to
on or off AAF within an application.

A special situation occurs when a command, which uses the AAF, is interrupted by a software reset (
function ’GDC_CMD_SwRs’). In this case even a NoOp command can not ensure reinitialization of A
It is necessary to execute a dummy drawing command after changing the AAF settings in order to r
double buffered values inside AAF. Note that AAF is enabled during dummy command and the optio
the command executed before SWReset are activated. After the dummy command the new settings
plied to AAF.

Table 2-13 gives an overview and a classification about the described problem.

2.11 Pixel Engine (PE) Commands

There are four PE commands which load rectangular shapes of bitmaps or textures to video me
PutTxtBM, PutTxtCP, PutBM and PutCP commands have the option to disable the write process of
ground data to video memory.For PutTxtBM and PutTxtCP relevant configuration is
BGCOL_EN = 0. For PutBM and PutCP it is IGNORCOL_EN = 1. In both cases situation can occu
where the data stream to video memory is finished before procession of the command is terminated.
the case if not transferred background or ignore-coloured pixels were generated at the end.

Due to the finished data transfer the PP output FIFOs are empty already. If the command has finish
ready condition could be propagated to ULB command controller immediately, also if ULB has not sto
the PE device. Resulting from this too early sent “command ready” the ULB command controller fa

Only in the special situations with suppressed background pixels an additional {GDC_CMD_NO
GDC_CMD_SwRs();} command sequence is required as work around after using the described com
with its appropriate parameters where the error may occur (example for PutTxtBM):

GDC_CMD_TxBM (xmin,xmax,ymin,ymax,FgCol,BgCol,BgEn,0,0,Lay);

GDC_FIFO_INP(p_pat, Font->Offset, 0);

if (BgEn == 0) {

GDC_CMD_NOP(); /* finish PutTxtBM without data loss */

GDC_CMD_SwRs(); /* PutTxtBM with BGCOL_EN=0 work around */

Table 2-13: Overview for AAFEN double buffering

Subject Description

Description The AAF double buffer for AAFEN signal works not properly.

Classification HW limitation

Effects without
workaround

The AAF settings from previous command are still valid for currently exe
cuted command.

Solution/Workaround Workaround if no SWReset is used:

• Execute a NoOp command before AAF settings will be changed

If the drawing command with AAF is interrupted by a SWReset a specia
workaround is needed:

• Execute a NoOp command after SWReset (see also chapter 2.9)

• Execute dummy draw command

Concerned devices MB87J2120 (Lavender)
MB87P2020 (Jasmine)
MB87P2020-A (Jasmine redesign)

Testcase Code review
Page 348

Hints and Restrictions

essed
ards.

ing de-

ver-
around
mples

For bit-

n target

rec-
round

ut

utput

-

u-
}

The inserted NOP command is for de-coupling PutTxtBM from Software Reset. All data were proc
finally and closed. To bring the ULB command processor the software reset function is called afterw
GDC_CMD_SwRs() itself executes the SWRES and NOP commands to bring all command process
vices to an initial state (see also section 2.9).

An insertion of GDC_CMD_NOP() before each command register write (introduced in C-API former
sions) is not required. Only at dedicated points in the software at situations described above the work
is required. Other commands and with background enabled the error can not occur. Application exa
encountered only marginal performance loss at transparent text output over background drawings.
map transfer the additional two commands are not important.

Table 2-14 gives an overview and a classification about the described problem.

Because of the splitting between command and data write functions within API the NoOp-SwReset com-
mand sequence can not be included selectively after affected commands. This can only be done i
application or in a higher level API. The C-API can’t solve this problem by inserting a GDC_CMD_NOP()
and GDC_CMD_SwRs() before each command register write activity without performance loss. It is
ommended to solve this problem only at dedicated points in the higher level software if special backg
conditions are relevant only.

2.12 Pixel read back commands (GetPixel, XChPixel)

Internal data flow blocks ifREQCNT+1 data words does not fit into output FIFO. Therefore the full outp
FIFO size is not useable in some cases.

If an application wants to collect data in output FIFO in order to transfer acomplete block at once without
checking FIFO load for every data word for instance via DMA it is possible that not all data appear in o
FIFO and the initialized limit is not reached. Even if the next command was sent afterGetPixel orXCh-
Pixel which is normally suitable to flush input FIFO data flow blocking is not escaped.
Note that this behaviour doesnot occur if output FIFO is read withflag polling for every data word be-
cause the amount of words in output FIFO falls below the limitFIFOSIZE-REQCNT-1 at a certain time.
GetPA is not affected because it uses other registers thanREQCNT for block size calculation.

Table 2-14: Pixel engine commands

Subject Description

Description Pixel Engine signals end of command execution without stop signal from
command controller. This causes possible malfunction of command con
troller for the next command processed.

Classification HW limitation

Effects without
workaround

CommandsPutTxtBM,PutTxtCP,PutBM andPutCPwith background
disable (BGCOL_EN=0) or ignore colour enable (IGNORCOL_EN=1) can
cause command control malfunction. This may lead to an incorrect exec
tion of following commands.

Solution/Workaround SendNoOp-SwReset command sequence after PutTxt[BM|CP] if config-
ured with BGCOL_EN=0 or after Put[BM|CP] with IGNORCOL_EN=1.
This description is valid for Lavender and Jasmine.

Concerned devices MB87J2120 (Lavender)
MB87P2020 (Jasmine)
MB87P2020-A (Jasmine redesign)

Testcase EMDC: SDC.6
Restrictions Page 349

MB87J2120, MB87P2020-A Hardware Manual

fill)

ula-

t

st

l-
Table 2-15 gives an overview and a classification about the described problem.

A possibility to utilize the full output FIFO size is to ensure that alwaysREQCNT+1 words can be placed
in output FIFO. This limits the maximal package size (number of words to transfer for one output FIFO
for a givenREQCNT. The maximal package size can be calculated according to (1).

(27)

The function ’trunc’ in (27) means that only the natural part of this fraction should be taken for calc
tion. The parameter ’FIFOSIZE’ is the size of output FIFO. Note that ’pkg_size’ is the maximal pack-
age size, sizes smaller than the calculated size can be used.

Figure 2-2 shows an example on how to calculate the correct package size based on a givenREQCNT and
to read back a block of data. In order to keep the example simple flag polling forFLNOM_OFH is used but
it is also possible to generate an interrupt with this flag or to set upOFDMA_UL with the package size for
DMA transfer.
// --

// Calculate optimal package size for

// a given Request-Count

// --

reqcnt = G0REQCNT;

// Set FIFO size

if (G0CLKPDR_ID==0) { // Lavender

 of_size = 128;

} else { // Jasmine

 of_size = 64;

}

pkg_size = ((byte)(of_size/(reqcnt+1)))*(reqcnt+1);

// --

// Write command to display controller and

// set command registers for GetPixel

// (no registers required)

// --

GDC_CMD_GtPx();

// --

// write data to input FIFO

// --

for (jj=0;jj<pkg_size;jj++) {

Table 2-15: Pixel read back commands

Subject Description

Description Internal data flow blocks if REQCNT+1 data words does not fit into outpu
FIFO. Therefore the full output FIFO size is not useable in some cases.

Classification HW restriction

Effects without
workaround

If an application collects data in output FIFO, for some package sizes la
transfer to output FIFO is not started even if input FIFO flush has been
forced by a new command.

Solution/Workaround Ensure that free space in output FIFO is always greaterREQCNT.
This can be achieved if allowed package size is calculated according to
(27). If REQCNT stays constant for an application package size can be ca
culated offline.

Concerned devices MB87J2120 (Lavender)
MB87P2020 (Jasmine)
MB87P2020-A (Jasmine redesign)

Testcase EMDC: PP.9

pkg_size trunc FIFOSIZE
REQCNT 1+
---------------------------------() REQCNT 1+()×≤
Page 350

Hints and Restrictions

size
at-
nfig-
play

le GDC

k

at
 GDC_FIFO_INP((dword*)BuildIfData(x,y,layer),1,0);

}

// --

// send NoOp command to force FIFO flush

// --

GDC_CMD_NOP();

// --

// wait for data in OF

// --

G0OFUL_UL = pkg_size;

while (G0FLNOM_OFH==0);

// read data from output FIFO

for (jj=0;jj<pkg_size;jj++) {

 data[amount++] = G0OFIFO;

}

Figure 2-2: Example for package size calculation and read back

2.13 Display Interface Re-configuration

If modification of the display interface record (DIR, part of GPU) is used to re-configure the physical
and display timing (PHSIZE, MTIMODD, MTIMEVEN) it can happen that display output can’t be activ
ed again. This is important for multisync systems which work with different video resolutions (hot co
urable in running application). The error was discovered only if switching from higher to lower dis
resolution.

Intended configuration method was:

1. MTIMON = 0

2. reconfigure DIR

3. MTIMON = 1

To avoid this error it is recommended to use general hardware master reset and reconfigure the who
device:

1. CLKPDR_MRST = 1

2. CLKPDR_MRST = 0

3. reconfigure whole GDC

4. MTIMON = 1

.

Table 2-16: GPU sync timing change

Subject Description

Description If GPU display resolution is changed GPU may hang with no output (blac
display).

Classification HW restriction

Effects without
workaround

GPU may hang at resolution change from higher to lower resolutions.

Solution/Workaround Only a hardware reset (RESETX pin orCLKPDR_MRST) and re-configura-
tion reactivates GPU. This has to be considered if changing sync timing
runtime is required.
Restrictions Page 351

MB87J2120, MB87P2020-A Hardware Manual
Concerned devices MB87J2120 (Lavender)
MB87P2020 (Jasmine)
partly fixed for MB87P2020-A (Jasmine redesign)

Concerned devices MB87J2120 (Lavender)
MB87P2020 (Jasmine)
MB87P2020-A (Jasmine redesign)

Testcase EMDC: SPB.1

Table 2-16: GPU sync timing change

Subject Description
Page 352

D-3 Abbreviations
Page 353

MB87J2120, MB87P2020-A Hardware Manual
Page 354

Abbreviations
Abbreviations

AAF Anti Aliasing Filter

APLL Analog Phase Locked Loop

BPP Bits Per Pixel (colour depth)

BSF Bit Stream Formatter

CBP Control Bus Port

CCFL Cold Cathode Fluorescent Lamp

CCU Color Conversion Unit

CLUT Color Look-up Table

CRT Cathode Ray Tube

CTRL ConTRoL unit

CU Clock Unit

DAC Digital to Analog Converter

DFU Data Fetching Unit

DIPA Direct and Indirect Physical memory Access

DMA Direct Memory Access

DMAC DMA Controller

DPA Direct Physical memory Access

DRM Duty Ratio Modulator/Modulation

EMC Electromagnetic Compatibility

FET Field Effect Transistor

FSM Finite State Machine

GDC Graphic Display Controller (Lavender and/or Jasmine in this manual)

GPU Graphic Processing Unit

HW HardWare

IPA Indirect Physical memory Access

ISR Interrupt Service Routine

LCD Liquid Crystal Display

LSA Line Segment Accumulator

MAU Memory Access Unit

MCP Memory CoPy Unit

MCU Micro Controller Unit

PCB Printed Circuit Board
Abbreviations Page 355

MB87J2120, MB87P2020-A Hardware Manual
PE Pixel Engine

PP Pixel Processor

RGB Red / Green / Blue Color Format

RLE Run Length Encoding

SDC SDRAM Controller

SPB Serial Peripheral Bus

SPG Sync Pulse Generator

SW SoftWare

TFT Thin Film Transistor

TGA TGA is a trademark of Truevision, Inc.

ULB User Logic Bus (Controller)

VIC Video Interface Controller

YUV Luminance / Chrominance Color Format
Page 356

